Review for the General Chemistry Final Exam Second Semester Part 3 of 3 (a) Thermodynamics, (b) Transition Metals, (c) Redox and Electrochemistry, (d) Nuclear and (e) Organic # Part 14. Thermodynamics: - 203. A 10.0 g sample of silver is heated to 100.0 $^{\circ}$ C and then added to 20.0 g of water at 23.0 $^{\circ}$ C in an insulated calorimeter. At thermal equilibrium the temperature of the system was measured as 25.0 $^{\circ}$ C. What is the specific heat of silver? [specific heat = 4.2 J g⁻¹ $^{\circ}$ C⁻¹] - (A) 0.11 J/g K (C) 17 J/g K - (B) 0.22 J/g K (D) 34 J/g K - 204. Given these thermodynamic values, calculate ΔH in kJ for the reaction that follows. | $\Lambda \sqcup^{\circ} = I$ | (/n | nal). | |------------------------------|-----------|--------| | ΔH°f(| NJ/I | 1101). | | $C_2H_2(g)$ | +227 | |---------------------|------| | H ₂ O(g) | -242 | | CO ₂ (g) | -393 | $$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$$ - (A) -1830 kJ - (B) -2284 kJ - (C) -2510 kJ - (D) -1605 kJ - 205. Given these equations calculate the heat of formation of SO₃(g). $$SO_2(g) \rightarrow O_2(g) + S(s)$$ $$\Delta H = +300 \text{ kJ}$$ $$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$ $$\Delta H = -200 \text{ kJ}$$ - (A) -500 kJ mol^{-1} - (C) $+100 \text{ kJ mol}^{-1}$ - (B) -400 kJ mol^{-1} - (D) $+200 \text{ kJ mol}^{-1}$ ## 206. Given: 2 C(s) + O₂(g) → 2 CO(g) $$\Delta$$ H = -218 kJ $$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H = -393 \text{ kJ}$$ How much energy is produced in the combustion of 28 g of CO(g)? [Atomic Masses: C 12.0 g mol⁻¹; O 16.0 g mol⁻¹] - (A) 88 kJ - (B) 109 kJ - (C) 175 kJ - (D) 284 kJ - 207. Calculate ΔH (in kJ·mol⁻¹) for the reaction $$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$ Bond Energies (kJ mol⁻¹) H-H 435 N-N 946 (in N₂) N-H 389 - (A) 2340 kJ of heat absorbed - (B) 213 kJ of heat absorbed - (C) 2340 kJ of heat evolved - (D) 83 kJ of heat evolved - 208. Which change is likely to be accompanied by the greatest increase in entropy? - (A) $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ (at 25 °C) - (B) $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ (at 25 °C) - (C) $CO_2(s) \rightarrow CO_2(g)$ (at -70 °C) - (D) $H_2O(g) \rightarrow H_2O(I)$ (at 100 °C) - 209. For which process is the entropy change per mole the largest at constant temperature? - $(A) H_2O(I) \rightarrow H_2O(g)$ - (B) $H_2O(s) \rightarrow H_2O(g)$ - $(C) H_2O(s) \rightarrow H_2O(l)$ - (D) $H_2O(I) \rightarrow H_2O(s)$ - 210. In which process is entropy decreased? - (A) dissolving sugar in water - (B) expanding a gas - (C) evaporating a liquid - (D) freezing water - 211. When Al₂O₃(s) is formed from the elements at standard conditions, the values of ΔH^o and ΔG^o at 298 K are -1676 kJ mol⁻¹ and -1577 kJ mol⁻¹, respectively. The standard entropy of formation per mole, in joules per degree, will be - (A) -332 - (B) 157 - (C) -93.3 - (D) -0.0933 - (E) +15.7 - 212. Vaporization of a liquid is an example of a process for which - (A) ΔH , ΔS , and ΔG are positive at all temperatures. - (B) ΔH and ΔS are positive. - (C) ΔG is negative at low temperatures, positive at high temperatures. - (D) $\Delta H = \Delta S$ - 213. A particular chemical reaction has a negative ΔH and negative ΔS. Which statement is correct? - (A) The reaction is spontaneous at all temperatures. - (B) The reaction is nonspontaneous at all temperatures. - (C) The reaction becomes spontaneous as temperature increases. - (D) The reaction becomes spontaneous as temperature decreases. 214. For this process at 25 °C: $$H_2O(g) \rightarrow H_2O(I)$$ - (A) ΔH is negative and ΔS is negative. - (B) ΔH is negative and ΔS is positive. - (C) ΔH is positive and ΔS is positive. - (D) ΔH is positive and ΔS is negative. # Part 15. Electrochemistry: - 215. In every electrolytic and galvanic (voltaic) cell the anode is that electrode - (A) at which oxidation occurs. - (B) which attracts cations. - (C) at which electrons are supplied to the solution. - (D) at which reduction occurs. - 216. Which statement is true for the cell as it discharges? $$Zn \mid Zn^{2+}(1.0 \text{ M}) \mid Sn^{2+}(1.0 \text{ M}) \mid Sn$$ - (A) Oxidation occurs at the tin electrode. - (B) Electrons will flow from the tin electrode to the zinc electrode. - (C) The concentration of Zn²⁺ will increase. - (D) The mass of the tin electrode will decrease. - 217. In the electrolysis of dilute H₂SO₄, the anode reaction is - (A) where reduction occurs. - (B) $2 H^+ + 2 e^- \rightarrow H_2$ - (C) $4 \text{ OH}^- \rightarrow \text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^-$ - (D) 2 H₂O \rightarrow 4 H⁺ + O₂ + 4 e⁻. - 218. Five metals are represented by the symbols L, M, T, R, and Z. When a solution containing all five ions at 1 M concentration is electrolyzed with a small applied voltage, which metal is most likely to be deposited first on the cathode? # Unknown Metals Standard Oxidation Potentials E° L \rightarrow L²⁺ + 2 e⁻ +0.76 V M \rightarrow M²⁺ + 2 e⁻ +0.44 V T \rightarrow T²⁺ + 2 e⁻ +0.13 V R \rightarrow R³⁺ + 3 e⁻ -0.34 V Z \rightarrow Z⁺ + e⁻ -0.80 V (A) L (B) M (C) T (D) R (E) Z - 219. How many coulombs of electricity are required to completely convert 0.340 g of AgNO₃ into metallic Ag? - (A) 19.3 (B) 96.5 (C) 303 (D) 386 - 220. What time is required to plate 2.08 g of copper at a constant current flow of 1.26 A? [Atomic Mass Cu 63.5 g mol⁻¹] $$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$ - (A) 41.8 min - (C) 128 min - (B) 83.6 min - (D) 4820 min - 221. What would be the E^o value in volts for a zinc–silver galvanic cell? Standard Reduction Potentials: $$Zn^{2+} + 2e^{-} \rightarrow Zn$$ $$E^{o} = -0.76 \text{ V}$$ $$Ag^+ + e^- \rightarrow Ag$$ $$E^{\circ} = +0.80 \text{ V}$$ - (A) 0.76 0.80 - (B) $0.76 (2 \times 0.80)$ - (C) 0.76 + 0.80 - (D) $0.76 + (2 \times 0.80)$ - 222. What is the *E*⁰ value of the cell reaction described by the equation? $$Cd + 2 Ag^+ \rightarrow Cd^{2+} + 2 Ag$$ Standard Reduction Potentials E^{o} $$Cd \rightarrow Cd^{2+} + 2e^{-} 0.40 \text{ V}$$ $$Ag \rightarrow Ag^+ + e^- -0.80 \text{ V}$$ - (A) + 0.40 V - (B) -0.40 V - (C) +1.20 V - (D) +2.00 V - 223. Using only the metals Mg, Al, Zn, Fe, Cu and Ag, together with their 1.0 M salt solutions, a voltaic cell of the highest possible voltage would be constructed using electrodes of these metals: Standard Oxidation Potentials $$E^{0}$$ Mg → Mg²⁺ + 2e⁻ 2.37 V Al → Al³⁺ + 3e⁻ 1.66 V Zn → Zn²⁺ + 2e⁻ 0.76 V Fe → Fe²⁺ + 2e⁻ 0.44 V Cu → Cu²⁺ + 2e⁻ -0.34 V Ag → Ag⁺ + e⁻ -0.80 V - (A) Mg and Ag (D) Mg and Fe - (B) Zn and Cu (E) Al and Ag $$Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$$ The standard potential for this reaction is 0.78 V. What is the potential if the concentrations are 0.040 M Cu²⁺? and 0.40 M Fe²⁺? - (A) 0.72 V - (B) 0.75 V - (C) 0.81 V - (D) 0.84 V - 225. Which reaction is spontaneous in the direction written? | Standard Reduction Potentials E ⁰ | | | |--|---------|--| | $Mg \rightarrow Mg^{2+} + 2 e^{-}$ | 2.37 V | | | $AI \rightarrow AI^{3+} + 3 e^{-}$ | 1.66 V | | | $Zn \rightarrow Zn^{2+} + 2 e^{-}$ | 0.76 V | | | Fe → Fe ²⁺ + 2 e ⁻ | 0.44 V | | | Cu → Cu ²⁺ + 2 e ⁻ | -0.34 V | | | $Ag \rightarrow Ag^+ + e^-$ | -0.80 V | | - (A) 2 Ag + Cu²⁺ \rightarrow Cu + 2 Ag⁺ - (B) Fe + $Zn^{2+} \rightarrow Fe^{2+} + Zn$ - (C) $2 \text{ Al} + 3 \text{ Mg}^{2+} \rightarrow 2 \text{ Al}^{3+} + 3 \text{ Mg}$ - (D) 2 Al + 3 $Zn^{2+} \rightarrow 2 Al^{3+} + 3 Zn$ - 226. In the ion $H_2P_2O_7^{2-}$, the oxidation number for P is - (A) 2 - (B) 4 - (C) 5 - (D) 6 - 227. Which statement is true for the reaction? $$Fe(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Fe^{2+}(aq)$$ - (A) Cu²⁺ is oxidized. - (B) Cu²⁺ gains in oxidation state. - (C) Cu²⁺ is reduced. - (D) Fe(s) is reduced. - 228. In this reaction, which substance behaves as the oxidizing agent? $$Pb + PbO_2 + 2 H_2SO_4 \rightarrow 2 PbSO_4 + 2 H_2O$$ - (A) Pb - (B) PbSO₄ - (C) PbO₂ - (D) H₂SO₄ - 229. Which family of elements in the periodic table contains the most powerful oxidizing agents? - (A) the alkali family - (B) the nitrogen-phosphorus family - (C) the alkaline earth family - (D) the aluminum family - (E) the halogen family 230. Which is true of the equation? 8 KI + 9 $$H_2SO_4 \rightarrow$$ 4 I_2 + 8 KHSO₄ + H_2S + 4 H_2O - (A) The reducing agent is H₂S. - (B) The oxidizing agent is KI. - (C) The substance reduced is H₂SO₄. - (D) The substance oxidized is KHSO₄. - (E) This is not an oxidation-reduction equation. - 231. Standard Reduction Potentials Eo $$Ni^{2+}(aq) + 2 e^{-} \rightarrow Ni(s)$$ $E^{0} = -0.25 \text{ V}$ $Sn^{4+}(aq) + 2 e^{-} \rightarrow Sn^{2+}(aq)$ $E^{0} = +0.15 \text{ V}$ $Br_{2}(l) + 2 e^{-} \rightarrow 2 Br^{-}(aq)$ $E^{0} = +1.07 \text{ V}$ Which reaction will occur if each substance is in its standard state? - (A) Ni²⁺ will oxidize Sn²⁺ to give Sn⁴⁺ - (B) Sn⁴⁺ will oxidize Br⁻ to give Br₂ - (C) Br₂ will oxidize Ni(s) to give Ni²⁺ - (D) Ni²⁺ will oxidize Br₂ to give Br⁻ - 232. Which metal will reduce copper(II) ions but not zinc ions? | Standard Reduction Potentials E ^o | | | |--|---------------------------|--| | Na → Na ⁺ + e ⁻ | $E^{o} = 2.71 \text{ V}$ | | | $Zn \rightarrow Zn^{2+} + 2 e^{-}$ | $E^{o} = 0.76 \text{ V}$ | | | Fe \rightarrow Fe ²⁺ + 2 e ⁻ | $E^{o} = 0.4 \text{ V}$ | | | Pb \rightarrow Pb ²⁺ + 2 e ⁻ | $E^{o} = 0.13 \text{ V}$ | | | $H_2 \rightarrow 2H^+ + 2 e^-$ | $E^{o} = 0.00 \text{ V}$ | | | Cu \rightarrow Cu ²⁺ + 2 e ⁻ | $E^{o} = -0.34 \text{ V}$ | | | Hg \rightarrow Hg ²⁺ + 2 e ⁻ | $E^{o} = -0.85 \text{ V}$ | | | $Ag \rightarrow Ag^+ + e^-$ | $E^{o} = -0.80 \text{ V}$ | | (A) Na (B) Hg (C) Pb (D) Ag # Part 16. Coordination Chemistry: - 233. Which complex ion could have *cis*—*trans* isomers? - (A) square planar [PtBrCl₃]²⁻ - (B) octahedral [Fe(CN)₆]³⁻ - (C) tetrahedral [ZnBrCl₃]²⁻ - (D) octahedral [CrBr₂(NH₃)₄]⁺ - 234. What geometry does [CoF₆]³⁻ exhibit? - (A) tetrahedral (C) square planar - (B) octahedral (D) trigonal bipyramidal - 235. Which complex ion has the largest number of unpaired electrons? - (A) $Cu(NH_3)_4^{2+}$ - (D) $Fe(H_2O)_6^{3+}$ - (B) $Cr(NH_3)_6^{3+}$ - (E) CoCl₄²⁻ - (C) Mn(CN)₆⁴- # Part 17. Nuclear Chemistry: - 236. Which nuclear equation is properly balanced? - $(A)_{2}^{4} He + {}_{4}^{9} Be \rightarrow {}_{6}^{12} C + {}_{1}^{1} H$ - (B) ${}^{4}_{2}$ He + ${}^{14}_{7}$ N $\rightarrow {}^{17}_{8}$ O + ${}^{1}_{1}$ H - (C) $_{2}^{4}$ He + $_{12}^{24}$ Mg $\rightarrow _{14}^{27}$ Si + $_{1}^{1}$ H - (D) $^{14}_{7}$ N + $^{0}_{-1}$ e \rightarrow $^{14}_{8}$ O - 237. What is the expected decay of the radioactive isotope $^{39}_{17}$ CI? - (A) $^{39}_{17}$ CI \rightarrow $^{39}_{18}$ Ar + $^{0}_{1}$ b - (B) $^{39}_{17}$ CI \rightarrow $^{39}_{18}$ Ar + $^{0}_{-1}$ b - (C) $^{39}_{17}$ CI \rightarrow $^{43}_{19}$ K + $^{4}_{2}$ a - (D) $^{39}_{17}$ CI \rightarrow $^{39}_{18}$ Ar (with *K*-capture) - 238. Uranium–234 undergoes spontaneous radioactive decay to give an alpha particle and a new nucleus, **X**. $$^{234}_{92}$$ U $\rightarrow ^{4}_{2}$ He + **X** What is X? - (A) $^{230}_{90}$ U - (B) $^{230}_{90}$ Th - (C) 238 U - (D) ²³⁸₉₄ Pu - 239. The half–life of $^{214}_{83}$ Bi is 19.7 min. Starting with 10^{-3} g of $^{214}_{83}$ Bi, how many grams remain after 59.1 min ? - (A) 1.25 ′ 10⁻⁴ (C) 3.33 ′ 10⁻⁴ - (B) 2.50 ′ 10⁻⁴ (D) 5.00 ′ 10⁻⁴ - 240. Which particle, if lost from the *nucleus*, will result in *no* change in the atomic number? - (A) proton (D) neutron - (B) alpha particle (E) none of these - (C) beta particle # Part 18. Organic Chemistry: - 241. Which hydrocarbon belongs to the series that starts with ethene? - (A) acetylene (D) xylene - (B) ethane (E) propene - (C) benzene - 242. Which compound is an organic acid? - (A) (CH₃)₂CO - (D) CH₃CHO - (B) C₁₂H₂₃COOH - (E) C₅H₁₂ - (C) CH₃OH - 243. Which compound is an alcohol? - (A) $C_3H_5(OH)_3$ (D) $C_2H_5OC_2H_5$ - (B) C₂H₅CHO (E) HCOOH - (C) C₆H₁₄ - 244. An amino acid must contain the elements - (A) C, H, O (C) C, H, N, O - (B) C, H, N (D) C, H, O, N, S - 245. Which straight—chain hydrocarbon is unsaturated? - (A) C₅H₁₀ - (B) C₇H₁₆ - (C) C₆H₁₄ - (D) C₂H₆ - (E) C₃H₈ - 246. An example of a pair of isomers is - (A) CH₃OCH₃ and CH₃CH₂OH - (B) HOCH2CH3 and CH3CH2OH - (C) CH₃OH and CH₃CH₂OH - (D) ${}_{6}^{12}$ C and ${}_{6}^{14}$ C - 247. How many isomers are there for dibromobenzene? - (A) 1 (B) 2 (C) 3 (D) 4 - 248. The triple bond in C2H2 consists of - (A) I σ bond and 2 π bonds. - (B) 2 σ bonds and 1 π bond. - (C) 3 σ bonds. - (D) 3 π bonds. ## **Answers:** 203. B 204. C 205. B 206. D 207. D 208. C 209. B 210. D 211. A 212. B 213. D 214. A 215. A 216. C 217. D 218. E 219. C 220. B 221. C 222. C 223. A 224. B 225. D 226. C 227. C 228. C 229. E 230. C 231. C 232. C 233. D 234. B 235. D 236. B 237. B 238. B 239. A 240. D 241. E 242. B 243. A 244. C 245. A 246. A 247. C 248. A Please notify Dr Mattson (brucemattson@creighton.edu) of any mistakes or problems with this review.