Review for the General Chemistry Final Exam Second Semester Part 3 of 3 (a) Thermodynamics, (b) Transition Metals, (c) Redox and Electrochemistry, (d) Nuclear and (e) Organic

Part 14. Thermodynamics:

- 203. A 10.0 g sample of silver is heated to 100.0 $^{\circ}$ C and then added to 20.0 g of water at 23.0 $^{\circ}$ C in an insulated calorimeter. At thermal equilibrium the temperature of the system was measured as 25.0 $^{\circ}$ C. What is the specific heat of silver? [specific heat = 4.2 J g⁻¹ $^{\circ}$ C⁻¹]
 - (A) 0.11 J/g K (C) 17 J/g K
 - (B) 0.22 J/g K (D) 34 J/g K
- 204. Given these thermodynamic values, calculate ΔH in kJ for the reaction that follows.

$\Lambda \sqcup^{\circ} = I$	(/n	nal).
ΔH°f(NJ/I	1101).

$C_2H_2(g)$	+227
H ₂ O(g)	-242
CO ₂ (g)	-393

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$$

- (A) -1830 kJ
- (B) -2284 kJ
- (C) -2510 kJ
- (D) -1605 kJ
- 205. Given these equations calculate the heat of formation of SO₃(g).

$$SO_2(g) \rightarrow O_2(g) + S(s)$$

$$\Delta H = +300 \text{ kJ}$$

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

$$\Delta H = -200 \text{ kJ}$$

- (A) -500 kJ mol^{-1}
- (C) $+100 \text{ kJ mol}^{-1}$
- (B) -400 kJ mol^{-1}
- (D) $+200 \text{ kJ mol}^{-1}$

206. Given:

2 C(s) + O₂(g) → 2 CO(g)
$$\Delta$$
H = -218 kJ

$$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H = -393 \text{ kJ}$$

How much energy is produced in the combustion of 28 g of CO(g)? [Atomic Masses: C 12.0 g mol⁻¹; O 16.0 g mol⁻¹]

- (A) 88 kJ
- (B) 109 kJ
- (C) 175 kJ
- (D) 284 kJ
- 207. Calculate ΔH (in kJ·mol⁻¹) for the reaction

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

Bond Energies (kJ mol⁻¹)

H-H 435 N-N 946 (in N₂)

N-H 389

- (A) 2340 kJ of heat absorbed
- (B) 213 kJ of heat absorbed
- (C) 2340 kJ of heat evolved
- (D) 83 kJ of heat evolved

- 208. Which change is likely to be accompanied by the greatest increase in entropy?
 - (A) $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ (at 25 °C)
 - (B) $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ (at 25 °C)
 - (C) $CO_2(s) \rightarrow CO_2(g)$ (at -70 °C)
 - (D) $H_2O(g) \rightarrow H_2O(I)$ (at 100 °C)
- 209. For which process is the entropy change per mole the largest at constant temperature?
 - $(A) H_2O(I) \rightarrow H_2O(g)$
 - (B) $H_2O(s) \rightarrow H_2O(g)$
 - $(C) H_2O(s) \rightarrow H_2O(l)$
 - (D) $H_2O(I) \rightarrow H_2O(s)$
- 210. In which process is entropy decreased?
 - (A) dissolving sugar in water
 - (B) expanding a gas
 - (C) evaporating a liquid
 - (D) freezing water
- 211. When Al₂O₃(s) is formed from the elements at standard conditions, the values of ΔH^o and ΔG^o at 298 K are -1676 kJ mol⁻¹ and -1577 kJ mol⁻¹, respectively. The standard entropy of formation per mole, in joules per degree, will be
 - (A) -332
- (B) 157
- (C) -93.3

- (D) -0.0933
- (E) +15.7
- 212. Vaporization of a liquid is an example of a process for which
 - (A) ΔH , ΔS , and ΔG are positive at all temperatures.
 - (B) ΔH and ΔS are positive.
 - (C) ΔG is negative at low temperatures, positive at high temperatures.
 - (D) $\Delta H = \Delta S$
- 213. A particular chemical reaction has a negative ΔH and negative ΔS. Which statement is correct?
 - (A) The reaction is spontaneous at all temperatures.
 - (B) The reaction is nonspontaneous at all temperatures.
 - (C) The reaction becomes spontaneous as temperature increases.
 - (D) The reaction becomes spontaneous as temperature decreases.

214. For this process at 25 °C:

$$H_2O(g) \rightarrow H_2O(I)$$

- (A) ΔH is negative and ΔS is negative.
- (B) ΔH is negative and ΔS is positive.
- (C) ΔH is positive and ΔS is positive.
- (D) ΔH is positive and ΔS is negative.

Part 15. Electrochemistry:

- 215. In every electrolytic and galvanic (voltaic) cell the anode is that electrode
 - (A) at which oxidation occurs.
 - (B) which attracts cations.
 - (C) at which electrons are supplied to the solution.
 - (D) at which reduction occurs.
- 216. Which statement is true for the cell as it discharges?

$$Zn \mid Zn^{2+}(1.0 \text{ M}) \mid Sn^{2+}(1.0 \text{ M}) \mid Sn$$

- (A) Oxidation occurs at the tin electrode.
- (B) Electrons will flow from the tin electrode to the zinc electrode.
- (C) The concentration of Zn²⁺ will increase.
- (D) The mass of the tin electrode will decrease.
- 217. In the electrolysis of dilute H₂SO₄, the anode reaction is
 - (A) where reduction occurs.
 - (B) $2 H^+ + 2 e^- \rightarrow H_2$
 - (C) $4 \text{ OH}^- \rightarrow \text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^-$
 - (D) 2 H₂O \rightarrow 4 H⁺ + O₂ + 4 e⁻.
- 218. Five metals are represented by the symbols L, M, T, R, and Z. When a solution containing all five ions at 1 M concentration is electrolyzed with a small applied voltage, which metal is most likely to be deposited first on the cathode?

Unknown Metals Standard Oxidation Potentials E° L \rightarrow L²⁺ + 2 e⁻ +0.76 V M \rightarrow M²⁺ + 2 e⁻ +0.44 V T \rightarrow T²⁺ + 2 e⁻ +0.13 V R \rightarrow R³⁺ + 3 e⁻ -0.34 V Z \rightarrow Z⁺ + e⁻ -0.80 V

(A) L (B) M (C) T (D) R (E) Z

- 219. How many coulombs of electricity are required to completely convert 0.340 g of AgNO₃ into metallic Ag?
 - (A) 19.3 (B) 96.5 (C) 303 (D) 386
- 220. What time is required to plate 2.08 g of copper at a constant current flow of 1.26 A? [Atomic Mass Cu 63.5 g mol⁻¹]

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$

- (A) 41.8 min
- (C) 128 min
- (B) 83.6 min
- (D) 4820 min
- 221. What would be the E^o value in volts for a zinc–silver galvanic cell?

Standard Reduction Potentials:

$$Zn^{2+} + 2e^{-} \rightarrow Zn$$

$$E^{o} = -0.76 \text{ V}$$

$$Ag^+ + e^- \rightarrow Ag$$

$$E^{\circ} = +0.80 \text{ V}$$

- (A) 0.76 0.80
- (B) $0.76 (2 \times 0.80)$
- (C) 0.76 + 0.80
- (D) $0.76 + (2 \times 0.80)$
- 222. What is the *E*⁰ value of the cell reaction described by the equation?

$$Cd + 2 Ag^+ \rightarrow Cd^{2+} + 2 Ag$$

Standard Reduction Potentials E^{o}

$$Cd \rightarrow Cd^{2+} + 2e^{-} 0.40 \text{ V}$$

$$Ag \rightarrow Ag^+ + e^- -0.80 \text{ V}$$

- (A) + 0.40 V
- (B) -0.40 V
- (C) +1.20 V
- (D) +2.00 V
- 223. Using only the metals Mg, Al, Zn, Fe, Cu and Ag, together with their 1.0 M salt solutions, a voltaic cell of the highest possible voltage would be constructed using electrodes of these metals:

Standard Oxidation Potentials
$$E^{0}$$
Mg → Mg²⁺ + 2e⁻ 2.37 V
Al → Al³⁺ + 3e⁻ 1.66 V
Zn → Zn²⁺ + 2e⁻ 0.76 V
Fe → Fe²⁺ + 2e⁻ 0.44 V
Cu → Cu²⁺ + 2e⁻ -0.34 V
Ag → Ag⁺ + e⁻ -0.80 V

- (A) Mg and Ag (D) Mg and Fe
- (B) Zn and Cu (E) Al and Ag

$$Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq)$$

The standard potential for this reaction is 0.78 V. What is the potential if the concentrations are 0.040 M Cu²⁺? and 0.40 M Fe²⁺?

- (A) 0.72 V
- (B) 0.75 V
- (C) 0.81 V
- (D) 0.84 V
- 225. Which reaction is spontaneous in the direction written?

Standard Reduction Potentials E ⁰		
$Mg \rightarrow Mg^{2+} + 2 e^{-}$	2.37 V	
$AI \rightarrow AI^{3+} + 3 e^{-}$	1.66 V	
$Zn \rightarrow Zn^{2+} + 2 e^{-}$	0.76 V	
Fe → Fe ²⁺ + 2 e ⁻	0.44 V	
Cu → Cu ²⁺ + 2 e ⁻	-0.34 V	
$Ag \rightarrow Ag^+ + e^-$	-0.80 V	

- (A) 2 Ag + Cu²⁺ \rightarrow Cu + 2 Ag⁺
- (B) Fe + $Zn^{2+} \rightarrow Fe^{2+} + Zn$
- (C) $2 \text{ Al} + 3 \text{ Mg}^{2+} \rightarrow 2 \text{ Al}^{3+} + 3 \text{ Mg}$
- (D) 2 Al + 3 $Zn^{2+} \rightarrow 2 Al^{3+} + 3 Zn$
- 226. In the ion $H_2P_2O_7^{2-}$, the oxidation number for P is
 - (A) 2
- (B) 4
- (C) 5
- (D) 6
- 227. Which statement is true for the reaction?

$$Fe(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Fe^{2+}(aq)$$

- (A) Cu²⁺ is oxidized.
- (B) Cu²⁺ gains in oxidation state.
- (C) Cu²⁺ is reduced.
- (D) Fe(s) is reduced.
- 228. In this reaction, which substance behaves as the oxidizing agent?

$$Pb + PbO_2 + 2 H_2SO_4 \rightarrow 2 PbSO_4 + 2 H_2O$$

- (A) Pb
- (B) PbSO₄
- (C) PbO₂
- (D) H₂SO₄
- 229. Which family of elements in the periodic table contains the most powerful oxidizing agents?
 - (A) the alkali family
 - (B) the nitrogen-phosphorus family
 - (C) the alkaline earth family
 - (D) the aluminum family
 - (E) the halogen family

230. Which is true of the equation?

8 KI + 9
$$H_2SO_4 \rightarrow$$

4 I_2 + 8 KHSO₄ + H_2S + 4 H_2O

- (A) The reducing agent is H₂S.
- (B) The oxidizing agent is KI.
- (C) The substance reduced is H₂SO₄.
- (D) The substance oxidized is KHSO₄.
- (E) This is not an oxidation-reduction equation.
- 231. Standard Reduction Potentials Eo

$$Ni^{2+}(aq) + 2 e^{-} \rightarrow Ni(s)$$
 $E^{0} = -0.25 \text{ V}$
 $Sn^{4+}(aq) + 2 e^{-} \rightarrow Sn^{2+}(aq)$ $E^{0} = +0.15 \text{ V}$
 $Br_{2}(l) + 2 e^{-} \rightarrow 2 Br^{-}(aq)$ $E^{0} = +1.07 \text{ V}$

Which reaction will occur if each substance is in its standard state?

- (A) Ni²⁺ will oxidize Sn²⁺ to give Sn⁴⁺
- (B) Sn⁴⁺ will oxidize Br⁻ to give Br₂
- (C) Br₂ will oxidize Ni(s) to give Ni²⁺
- (D) Ni²⁺ will oxidize Br₂ to give Br⁻
- 232. Which metal will reduce copper(II) ions but not zinc ions?

Standard Reduction Potentials E ^o		
Na → Na ⁺ + e ⁻	$E^{o} = 2.71 \text{ V}$	
$Zn \rightarrow Zn^{2+} + 2 e^{-}$	$E^{o} = 0.76 \text{ V}$	
Fe \rightarrow Fe ²⁺ + 2 e ⁻	$E^{o} = 0.4 \text{ V}$	
Pb \rightarrow Pb ²⁺ + 2 e ⁻	$E^{o} = 0.13 \text{ V}$	
$H_2 \rightarrow 2H^+ + 2 e^-$	$E^{o} = 0.00 \text{ V}$	
Cu \rightarrow Cu ²⁺ + 2 e ⁻	$E^{o} = -0.34 \text{ V}$	
Hg \rightarrow Hg ²⁺ + 2 e ⁻	$E^{o} = -0.85 \text{ V}$	
$Ag \rightarrow Ag^+ + e^-$	$E^{o} = -0.80 \text{ V}$	

(A) Na (B) Hg (C) Pb (D) Ag

Part 16. Coordination Chemistry:

- 233. Which complex ion could have *cis*—*trans* isomers?
 - (A) square planar [PtBrCl₃]²⁻
 - (B) octahedral [Fe(CN)₆]³⁻
 - (C) tetrahedral [ZnBrCl₃]²⁻
 - (D) octahedral [CrBr₂(NH₃)₄]⁺
- 234. What geometry does [CoF₆]³⁻ exhibit?
 - (A) tetrahedral (C) square planar
 - (B) octahedral (D) trigonal bipyramidal

- 235. Which complex ion has the largest number of unpaired electrons?
 - (A) $Cu(NH_3)_4^{2+}$
- (D) $Fe(H_2O)_6^{3+}$
- (B) $Cr(NH_3)_6^{3+}$
- (E) CoCl₄²⁻
- (C) Mn(CN)₆⁴-

Part 17. Nuclear Chemistry:

- 236. Which nuclear equation is properly balanced?
 - $(A)_{2}^{4} He + {}_{4}^{9} Be \rightarrow {}_{6}^{12} C + {}_{1}^{1} H$
 - (B) ${}^{4}_{2}$ He + ${}^{14}_{7}$ N $\rightarrow {}^{17}_{8}$ O + ${}^{1}_{1}$ H
 - (C) $_{2}^{4}$ He + $_{12}^{24}$ Mg $\rightarrow _{14}^{27}$ Si + $_{1}^{1}$ H
 - (D) $^{14}_{7}$ N + $^{0}_{-1}$ e \rightarrow $^{14}_{8}$ O
- 237. What is the expected decay of the radioactive isotope $^{39}_{17}$ CI?
 - (A) $^{39}_{17}$ CI \rightarrow $^{39}_{18}$ Ar + $^{0}_{1}$ b
 - (B) $^{39}_{17}$ CI \rightarrow $^{39}_{18}$ Ar + $^{0}_{-1}$ b
 - (C) $^{39}_{17}$ CI \rightarrow $^{43}_{19}$ K + $^{4}_{2}$ a
 - (D) $^{39}_{17}$ CI \rightarrow $^{39}_{18}$ Ar (with *K*-capture)
- 238. Uranium–234 undergoes spontaneous radioactive decay to give an alpha particle and a new nucleus, **X**.

$$^{234}_{92}$$
 U $\rightarrow ^{4}_{2}$ He + **X**

What is X?

- (A) $^{230}_{90}$ U
- (B) $^{230}_{90}$ Th
- (C) 238 U
- (D) ²³⁸₉₄ Pu
- 239. The half–life of $^{214}_{83}$ Bi is 19.7 min. Starting with 10^{-3} g of $^{214}_{83}$ Bi, how many grams remain after 59.1 min ?
 - (A) 1.25 ′ 10⁻⁴ (C) 3.33 ′ 10⁻⁴
 - (B) 2.50 ′ 10⁻⁴ (D) 5.00 ′ 10⁻⁴
- 240. Which particle, if lost from the *nucleus*, will result in *no* change in the atomic number?
 - (A) proton (D) neutron
 - (B) alpha particle (E) none of these
 - (C) beta particle

Part 18. Organic Chemistry:

- 241. Which hydrocarbon belongs to the series that starts with ethene?
 - (A) acetylene (D) xylene
 - (B) ethane (E) propene
 - (C) benzene
- 242. Which compound is an organic acid?
 - (A) (CH₃)₂CO
- (D) CH₃CHO
- (B) C₁₂H₂₃COOH
- (E) C₅H₁₂
- (C) CH₃OH
- 243. Which compound is an alcohol?
 - (A) $C_3H_5(OH)_3$ (D) $C_2H_5OC_2H_5$
 - (B) C₂H₅CHO (E) HCOOH
 - (C) C₆H₁₄
- 244. An amino acid must contain the elements
 - (A) C, H, O (C) C, H, N, O
 - (B) C, H, N (D) C, H, O, N, S
- 245. Which straight—chain hydrocarbon is unsaturated?
 - (A) C₅H₁₀
- (B) C₇H₁₆
- (C) C₆H₁₄
- (D) C₂H₆
- (E) C₃H₈
- 246. An example of a pair of isomers is
 - (A) CH₃OCH₃ and CH₃CH₂OH
 - (B) HOCH2CH3 and CH3CH2OH
 - (C) CH₃OH and CH₃CH₂OH
 - (D) ${}_{6}^{12}$ C and ${}_{6}^{14}$ C
- 247. How many isomers are there for dibromobenzene?
 - (A) 1 (B) 2 (C) 3 (D) 4
- 248. The triple bond in C2H2 consists of
 - (A) I σ bond and 2 π bonds.
 - (B) 2 σ bonds and 1 π bond.
 - (C) 3 σ bonds.
 - (D) 3 π bonds.

Answers:

203. B

204. C

205. B

206. D

207. D

208. C 209. B

210. D

211. A 212. B

213. D

214. A

215. A

216. C

217. D

218. E

219. C

220. B

221. C

222. C

223. A

224. B

225. D

226. C

227. C

228. C 229. E

230. C

231. C 232. C

233. D

234. B 235. D

236. B 237. B

238. B

239. A 240. D

241. E

242. B

243. A 244. C

245. A

246. A

247. C

248. A

Please notify Dr Mattson (brucemattson@creighton.edu) of any mistakes or problems with this review.