EXAM THREE CHM 203 (Dr. Mattson) 15 October 2010

Print your name:

Signature:

Instructions: Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your periodic table — Write: "See PT" in box and then attach the periodic table. BOX YOUR ANSWERS! Write legibly.

- 1. In an experiment, aluminum foil, Al(s), is placed in a container with 440 mL 0.224 M $CuCl_2(aq)$. The reaction continues until all of the blue color of Cu^{+2} is gone. Some aluminum remains.
- 1a. (2 pts) The reaction produces copper metal, Cu(s), and Al⁺³(aq). Balance the net ionic reaction:

 $_$ Cu⁺²(aq) + $_$ Al(s) \rightarrow $_$ Cu(s) + $_$ Al⁺³(aq)

1b. (1 pt) What was oxidized?

A. Cu ⁺² (aq)	B. Al(s)
--------------------------	----------

C. Al ⁺³ (aq) [D. Cu(s)
----------------------------	----------

1c.	(1	pt)	What	was	reduced?
-----	----	-----	------	-----	----------

A. Cu ⁺² (aq)	B. Al(s)
C. Al ⁺³ (aq)	D. Cu(s)

1d. (1 pt) What was the oxidizing agent?

A. Cu ⁺² (aq)	B. Al(s)
--------------------------	----------

- C. Al⁺³(aq) D. Cu(s)
- 1f. (4 pts) How many moles of copper metal were produced?

1g. (1 pt) What was the limiting reagent?

A. Cu ⁺² (aq)	B. Al(s)
C. Al ⁺³ (aq)	D. Cu(s)

1h. (3 pts) What mass of Al(s) was consumed?

2. (4 pts) In a certain chemical reaction that emits light as a form of energy, the wavelength of 509 nm is observed. Convert this energy to kJ/mol.

3. (3 pts) In the Brackett series, electrons drop in energy from *n* > 4 to *n* = 4. Calculate the wavelength of an electron transition from *n* = 7 →

n = 4.

4. (3 pts) If *n* = 3, which of the following values for *l* are allowed? Circle <u>all</u> that are allowed.

A. *l* = 2 B. *l* = -2 C. *l* = 3 D. *l* = 0

5. (3 pts) If l = 2, which of the following values for m_l are allowed? Circle <u>all</u> that are allowed.

A. $m_l = 3$ B. $m_l = -3$ C. $m_l = 0$ D. $m_l = 2$

6. (5 pts) What type of orbital is described from the following combination of quantum numbers? The first one is done for you.

	n	l	m_l	Answer:
(a)	2	1	-1	2p
(b)	4	0	0	
(C)	5	2	2	
(d)	1	0	0	
(e)	5	3	-1	
(f)	3	1	0	

7. (4 pts) Which orbital from each pair is lower in energy?

(a) 4s or 3p	(b) 3d or 4d
(c) 3d or 3p	(d) 3d or 4p

8. (5 pts) What is the largest atomic number for an atom that has a ground-state electron in the following orbitals? The first one is one as an example.

(a) 2s 4	(b) 3p
(c) 4d	(d) 7s
(e) 6p	(f) <i>n</i> = 4, <i>l</i> = 1

9. (5 pts) What atom is identified by each of these electron configurations?

(a) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²
(b) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁴
(c) [Ar] 4s ² 3d ¹⁰ 4p ¹
(d) [Kr] 5s ² 4d ⁵
(e) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ¹

10. (4 pts) Which member of each group has the largest atomic radius?

(a) Na K Rb	(b) B C N
(c) Sc Zn Kr	(d) Z = 9 10 11

Z = atomic number

11. (4 pts) Which member of each group has the smallest first ionization energy?

(a) Na K Rb	(b) B C N
(c) Sc Zn Kr	(d) Z = 9 10 11

12. (4 pts) Which member of each group has the smallest effective nuclear charge?

(a) O F Ne	(b) B C N
(c) Sc Zn Kr	(d) Z = 29 30 31

13. (4 pts) Which member of each group has the largest electron affinity?

(a) O F Ne	(b) Sc Ti V
(c) K Ca Sc	(d) Z = 29 30 31

14. (3 pts) Write electron configurations for the following ions. You may use core notation.

(a) Ca ⁺²		
(b) Mn ⁺²		
(b) Se ²⁻		

15. (4 pts) Circle the largest member of each pair.

(a) Na Na ⁺	(b) F F ⁻
(c) Sc Sc ⁺³	(d) P P ⁻³

- 16. (2 pts) Are combustion reactions also oxidationreduction reactions? YES or NO
- 17. (10 pts) Nomenclature. Name the following ionic compounds. Print!

a. NH ₄ NO ₂
b. NaHCO ₃
c. K ₂ SO ₄
d. Ag ₂ SO ₄
e. Pb(SO ₄) ₂
f. LiNO ₃
g. KCIO ₂
h. Mg(BrO ₂) ₂
i. Al ₂ S ₃
j. CuBr ₂

Print your name below:

For DocM to complete:Subtotal from exam:Homework: (20 max)Total:Determine your grade: $A + \ge 95; A \ge 90; B + \ge 85; B \ge 80; C + \ge 75; C \ge 70; D \ge 60$

Answers:

- 1a. 3 $Cu^{+2}(aq)$ + 2 Al(s) \rightarrow 3 Cu(s) + 2 Al^{+3}(aq)
- 1b. B. Al(s)
- 1c. A. Cu⁺²(aq)
- 1d. A. Cu⁺²(aq)
- 1f. 0.0986 mol Cu(s)
- 1g. A. Cu⁺²(aq)
- 1h. 1.77 gAl(s)
- 2. 235 kJ/mol
- 3. 2166 nm
- 4. A and D
- 5. C and D
- 6. (b) 4s; (c) 5d; (d) 1s; (e) 5f; (f) 3p
- 7. (a) 3p; (b) 3d; (c) 3p; (d) 3d
- 8. (b) 18; (c) 48; (d) 88; (e) 86; (f) 36
- 9. (a) Ca; (b) Cr; (c) Ga; (d) Tc; (e) Ga
- 10. (a) Rb; (b) B; (c) Sc; (d) Z = 11
- 11. (a) Rb; (b) B; (c) Sc; (d) Z = 11
- 12. (a) O; (b) B; (c) Sc; (d) Z = 29
- 13. (a) F; (b) V; (c) Sc; (d) Z = 31
- 14. (a) [Ar]; (b) [Ar] 4s⁰ 3d⁵; [Kr]
- 15. (a) Na; (b) F⁻; (c) Sc; (d) P⁻³
- 16. YES
- 17.(a) ammonium nitrite; (b) sodium bicarbonate (or sodium hydrogen carbonate; (c) potassium sulfate;
 (d) silver(I) sulfate; (e) lead(IV) sulfate; (f) lithium nitrate; (g) potassium chlorite; (h) magnesium bromite; (i) aluminum sulfide; (j) copper(II) bromide