Exam Two	Print your name:	Circle your section:
CHM 203 (Dr. Mattson) 12 October 2011	Signature:	8:30 9:30

Instructions: Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your periodic table — Write: "See PT" in box and then attach the periodic table. BOX YOUR ANSWERS! Write legibly.

1. (5 pts) Strong/Weak/Non-electrolyte? All of the following substances form aqueous solutions. Classify each of these solutions as a strong (S), weak (W), or non-electrolyte (N).

CuCl ₂ (aq)	S	W	Ν
HC ₂ H ₃ O ₂ (aq)	S	W	Ν
C ₂ H ₃ OH(aq)	S	W	Ν
C ₁₂ H ₂₂ O ₁₁ (aq)	S	W	Ν
HClO ₄ (aq)	S	W	Ν

2. (2 pts) Ammonia, NH₃, forms an aqueous solution that is described by the equation shown below. Note the arrows.

 $NH_3(aq) + H_2O(I)$ $\leftarrow \longrightarrow$ $OH^-(aq) + NH_4^+(aq)$

- (a) What sort of electrolytic solution does ammonia
 - form? Circle: Strong Weak Non-electrolyte
- (b) Is the solution mostly $NH_3(aq)$, with very little

 $OH^{-}(aq)$ and $NH_{4}^{+}(aq)$? Circle: Yes No

- 3. (3 pts) What would happen if 1.0 g AgCl(s) were dumped into a beaker containing 200 mL distilled water and stirred? Circle all that are true.
 - (a) The AgCl(s) would dissolve, forming AgCl(aq).
 - (b) The conductivity light would light up.
 - (c) The solution would be acidic.
 - (d) An oxidation-reduction reaction would occur.
 - (e) The AgCl(s) would settle on the bottom.
- 4. (7 pts) Which of these ionic substances are expected to be water-soluble?

	NiSO ₄	NH ₄ NO ₃	Bi(ClO ₄) ₃	PbCl ₂
--	-------------------	---------------------------------	------------------------------------	-------------------

CdS $Fe(OH)_3$ $Ca(C_2H_3O_2)_2$ BaSO ₄
--

- 5. (4 pts) HCl(aq) reacts with KOH(aq).
- (a) Write and balance the overall equation, including states of matter such as (aq), (I), etc.

(b) Write and balance the net ionic equation.

- 6. (3 pts) Suppose a solution contains a mixture of $Hg_2(NO_3)_2(aq)$ and $Hg(NO_3)_2(aq)$. How might one separate the mercurous ion for the mercuric ion? Circle all that are true.
 - (a) Add Cl⁻(aq) to precipitate the Hg₂⁺², but not the Hg⁺²(ag).
 - (b) Add Cl⁻(aq) to precipitate the Hg⁺², but not the Hg₂⁺²(aq).
 - (c) Add S⁻²(aq) to precipitate the Hg₂⁺², but not the Hg⁺²(aq).

this question if you are nomenclature certified.)			
Formula:	Name:		
N ₂ O ₄			
Mg(HCO ₃) ₂			
FeBr ₃			
H ₂ SO ₃			
HC ₂ H ₃ O ₂			
	perchloric acid		
	phosphoric acid		
	potassium sulfide		
	copper(II) chloride		
	bromine pentafluoride		

7. (10 pts) Nomenclature. Complete the table. (Skip this question if you are nomenclature certified.)

- 8. In an experiment similar to the one you saw in class, 17.00 g aluminum foil was added to 475 mL of a 0.428 M solution of green Ni⁺²(aq). The green color of the solution faded to clear with time. It was determined that elemental nickel, Ni, and Al⁺³(aq) were the products of the reaction.
- (a) (2 pts) Write the *balanced* net ionic equation for this reaction. Include the states of matter, (s) or (aq).

(b) (1 pt) What was oxidized? Circle one:

Ni(s) Ni⁺²(aq) Al(s)

Al⁺³(aq)

(c) (1 pt) What was reduced? Circle one:


(d) (1 pt) What was the oxidizing agent? Circle one:

Ni(s) Ni⁺²(aq) Al(s) Al⁺³(aq)

(e) (3 pt) What was the limiting reagent? Show work!

Circle one:	Ni(s)	Ni ⁺² (aq)	Al(s)	Al ⁺³ (aq)

9. (4 pts) What volume (in mL) of 0.45 M KOH(aq) is required to react completely with 50.00 mL 0.2227 M H₂SO₄(aq)? Hint: Balance the equation first!

10. (4 pts) What volume of 0.204 M K₂Cr₂O₇(aq) (in mL) is required to react completely with 1.12 g $Fe(NO_3)_2(s)$ (MM = 179.9 g/mol) according to:

 $Cr_2O_7^{-2}(aq)$ + 6 Fe⁺²(aq) + 14 H⁺(aq) →

2 Cr⁺³(aq) + 6 Fe⁺³(aq) + 7 H₂O(aq)

11. (5 pts) A certain electron transition emits a photon with a wavelength of 610 nm. What is the corresponding energy in kJ/mol?

12. (4 pts) Which member of each pair represents the larger energy? Circle your choice for each pair.

(a) Electromagnetic waves: λ = 400 nm or 600 nm

(b) Electron transition: $n = 4 \rightarrow n = 3$ or $n = 5 \rightarrow n=3$

(c) Frequency: $v = 5 \times 10^{14} \text{ s}^{-1}$ or 7 x 10¹⁴ s⁻¹

(d) Orbitals: 4p or 5s

13. (5 pts) What are the allowed values of the quantum number in question, given the value of another quantum number? Provide a <u>range</u> of values as per the example in (a). Answer should be based on what is possible according to the theory, not what exists with the known elements.

_	lf	then	Range:
(a)	lf / = 4	then n =	5 †0 ∞
(b)	lf n = 6	then / =	
(C)	lf / = 3	then m _/ =	
(d)	If m ₁ = 2	then / =	
(e)	lf n = 17	then / =	
(f)	If m ₁ = 3	then n =	

14. (8 pts) According to the Aufbau principle, which orbital is filled immediately before and after each of the following in a multi-electron atom?

	Filled before:		Filled after:
(a)		4s	
(b)		4d	
(C)		Зр	
(d)		4f	

15. (8 pts) Write the electron configurations using core notation and indicate the number of unpaired electrons present in each of the following ground-state atoms.

	Electron configuration	Unpaired e ⁻
(a) N		
(b) S		
(c) Fe		
(d) Te		

Print your name here:

For DocM to complete: Subtotal from exam:

Homework: (20 max)

Total:

Determine your grade:

$$c = \lambda v \qquad \Delta E_{per \, photon} = hc/\lambda \qquad \Delta E_{per \, mol \, photon} = \Delta E_{per \, photon} \times N_A$$

$$E = -2.178 \times 10^{-18} J(1/n^2) \qquad \Delta E = E_f - E_i = -2.178 \times 10^{-18} J(1/n_f^2 - 1/n_i^2)$$

$$1/\lambda = 1.097 \times 10^{-2} \, nm^{-1} (1/n_f^2 - 1/n_i^2)$$

$$h = 6.626 \times 10^{-34} \, J \, s \qquad c = 3 \times 10^8 \, m/s \qquad N_A = 6.023 \times 10^{23} \, mol^{-1}$$

Answers

- 1. S, W, N, N, S
- 2. (a) Weak; (b) Yes
- 3. e
- 4. NiSO₄ NH₄NO₃ Bi(ClO₄)₃ Ca(C₂H₃O₂)₂
- 5. (a) $HCI(aq) + KOH(aq) \rightarrow H_2O(I) + KCI(aq)$
- (b) $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$
- 6. a

7.

Formula:	Name:
N ₂ O ₄	dinitrogen tetraoxide
Mg(HCO ₃) ₂	magnesium bicarbonate or magnesium hydrogen carbonate
FeBr ₃	iron(III) bromide or ferric bromide
H ₂ SO ₃	sulfurous acid
HC ₂ H ₃ O ₂	acetic acid
HCIO ₄	perchloric acid
H ₃ PO ₄	phosphoric acid
K ₂ S	potassium sulfide
CuCl ₂	copper(II) chloride
BrF ₅	bromine pentafluoride

8. (a) 3 Ni⁺²(aq) + 2 Al(s) \rightarrow 3 Ni(s) + 2 Al⁺³(aq)

(b) Al(s)

- (c) Ni⁺²(aq)
- (d) Ni⁺²(aq)
- (e) $Ni^{+2}(aq)$ (Go moles!: 0.630 mol Al and 0.203 mol $Ni^{+2}(aq)$; dividing each mole amount by the coefficients gives 0.315 for Al and 0.0678 for $Ni^{+2}(aq)$.)

9. 49.5 mL KOH(aq)

10. 5.10 mL

11. 196 kJ/mol

12. (a) λ = 400 nm; (b) n = 5 \rightarrow n=3; (c) 7 x 10¹⁴ s⁻¹; (d) 5s

13.

	If	then	Range:
(a)	lf / = 4	then n =	<mark>5 †0</mark> ∞
(b)	lf n = 6	then / =	0 to 5
(C)	lf / = 3	then m _l =	-3 to +3
(d)	If m ₁ = 2	then / =	2 to ∞
(e)	lf n = 17	then / =	0 to 16
(f)	If m ₁ = 3	then n =	4 to ∞

14.

	Filled before:		Filled after:
(a)	Зр	4s	3d
(b)	5s	4d	5р
(C)	3s	Зр	4s
(d)	6s	4f	5d

15.

	Electron configuration	Unpaired e ⁻
(a) N	1s ² 2s ² 2p ³	3
(b) S	[Ne] 3s ² 3p ⁴	2
(c) Fe	[Ar] 4s ² 3d ⁶	4
(d) Te	[Kr] 5s ² 4d ¹⁰ 5p ⁴	2