

Answer with units:

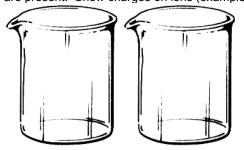
Answer with units:

- 11. (5 pts) True/False about the solubility rules:
 - T F All nitrates are soluble.
 - T F All carbonates are soluble, except for Ag⁺, Pb²⁺, and Hg₂²⁺.
 - T F All Group I salts are soluble.
 - T F Sulfides are generally insoluble except for Group I and NH_4^+ .
 - T F All chlorides are soluble.
- 12. (5 pts) What sort of solution results when each of the following compounds is placed in a beaker of water? Will the solution be a strong, weak or non-electrolyte?

A. Ba(NO ₃) ₂	strong	weak	non-electrolyte
B. FeCO ₃	strong	weak	non-electrolyte
C. HC ₂ H ₃ O ₂	strong	weak	non-electrolyte
D. HBr	strong	weak	non-electrolyte
E. C ₁₂ H ₂₂ O ₁₁	strong	weak	non-electrolyte

13. (6 pts) Which of these compounds are considered soluble in water? There is more than one!

A. NH ₄ Br	B. PbCl ₂	C. CuSO ₄
D. BaSO ₄	E. KC ₂ H ₃ O ₂	F. MgS


- 14. (4 pts) Match these reactions (all aqueous) with their type
- ____Acid-base A. HF + KOH → H₂O + KF
- Precipitation B. 2 Mg + $O_2 \rightarrow 2$ MgO

_ Redox C. 2 NaBr + CuSO₄ → CuBr₂ + Na₂ SO₄

- ____ No reaction D. Na₂CO₃ + CaCl₂ →CaCO₃ + 2 NaCl
- 15. (4 pts) Will a precipitate form if these two solutions are mixed? If so, identify the precipitate in the box at right.

$Ba(NO_3)_2(aq) + K_2SO_4(aq) →$	Yes No	
$(NH_4)_2S(aq) + Na_2CO_3(aq) \rightarrow$	Yes No	

16. (4 pts) Sketch a representation of HCl(aq) in the beaker at on the left and HF(aq) in the beaker on the right. The sketches must correctly portray what ions, if any, are present. Show charges on ions (example, Na⁺)

17. (2 pts) Write the net ionic reaction that takes place between any strong acid with any strong base?

- In class we saw the reaction between metallic aluminum and aqueous copper(II) chloride. We saw that solid metallic copper was formed and the other product was colorless AI⁺³(aq).
- 18a. (3 pts) Write and balance the net ionic reaction that took place.

18b. (2 pt) Circle the oxidizing agent and draw a box around the reducing agent.

19. (4 pts) Assign oxidation numbers to the sulfur atom in each of these compounds.

S ₈	H ₂ S
H ₂ SO ₃	SO3

Note: If you are Nomenclature Certified you may stop.

20. (5 pts) Name these substances.

HNO ₃	
CoCO ₃	
HCIO ₂	
KCIO ₃	
N ₂ O ₄	

21. (5 pts) Circle the correct formula for each of these.

A. vanadium(V) phosphate

$V_3(PO_4)_5$ V_5PO_4 B. potassium bromite	VPO ₄ VPO ₃	V ₃ (PO ₃) ₅ V ₅ (PO) ₄
PBrO ₃ K_2 BrO ₂ C. acetic acid	KBrO ₄ KBrO ₂	K ₂ BrO ₃ KBrO
$H_2C_2H_3O_2$ $H_2C_2H_2O_2$ D. tetraphosphorus tris	HC ₂ H ₂ O ₃ HC ₂ H ₃ O ₃ sulfide	H ₂ C ₂ H ₂ O ₃ HC ₂ H ₃ O ₂
$P_4(SO_3)_3$ P_4S_3 E. nitrous acid	$\begin{array}{c} P_4(SO_4)_3\\ (PO_4)_3S_3 \end{array}$	P ₅ S ₃ P ₃ S ₄
HNO ₂ H ₂ NO ₂	HNO ₃ H ₂ NO ₃	HNO ₄ H ₂ NO ₄

Subtotal from exam:

Folder work: (20 max)

Total:

Answers

1. $C_{3}H_{8}$. + 5 O_{2} → 3 CO_{2} + 4 $H_{2}O$ 2. 7 $N_{2}O$ + $C_{2}H_{6}$ → 7 N_{2} + 2 CO_{2} + 3 $H_{2}O$ 3. 37.9 mol KCIO₃ 4. 0.00670 mol KCIO₃ 5. 88.6% 6. 56.3 % P 7. $P_{4}O_{10}$ 8. $P_{2}S_{5}$ 9. C 10. 0.884 M $H_{3}PO_{4}$ 11. T F T T F 12.

A. Ba(NO ₃) ₂	strong electrolyte
B. FeCO ₃	non-electrolyte
С. HC ₂ H ₃ O ₂	weak electrolyte
D. HBr	strong electrolyte
E. C ₁₂ H ₂₂ O ₁₁	non-electrolyte

13. A C E

14. A D B C

15.

$Ba(NO_3)_2(aq) + K_2SO_4(aq) →$	Yes	BaSO ₄ (aq)
$(NH_4)_2S(aq) + Na_2CO_3(aq) \rightarrow$	No	

- 16. Your sketch of HCl(aq) should show 100% dissociated into H⁺ (or H₃O⁺) and Cl⁻. HF(aq) is a weak acid and the drawing should show mostly associated HF molecules and one dissociated H⁺ (or H₃O⁺) and F⁻.
- 17. H⁺(aq) + OH⁻(aq) → H₂O(I)
- 18. 3 $Cu^{+2}(aq)$ + 2 Al(s) \rightarrow 3 Cu(s) + 2 Al⁺³(aq)
- 18b. The oxidizing agent is $Cu^{+2}(aq)$; the reducing agent is Al(s).

19.

S ₈ ox number = 0	H_2S ox number = -2
H_2SO_3 ox number = +4	SO_3 ox number = +6

20. (5 pts) Name these substances.

Nitric acid

Cobalt(II) carbonate

Chlorous acid

Potassium chlorate

Dinitrogen tetroxide

21. (5 pts) Circle the correct formula for each of these.

- A. V₃(PO₄)₅
- B. KBrO₂

C. HC₂H₃O₂

 $D.P_4S_3$

E. HNO₂