
Εχαμ Τωο	Print your name:	Circle your
CHM 203 (Dr. Mattson)	Signature:	section:
29 SEPTEMBER 2010	olynatal el	8:30 9:30

Instructions: Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your periodic table — Write: "See PT" in box and then attach the periodic table. BOX YOUR ANSWERS! Write legibly.

- 5. (4 pts) Suppose a reaction was performed with a theoretical yield of 0.20 mol $Ca_3(PO_4)_2$ (MM = 310 g/mol). If the experimental yield turned out to be 57 g, what is the percent yield?
- 6. (4 pts) How many millimoles of copper(II) chloride are in a 75.0 mL sample of 0.1187 M CuCl₂(aq)?

7. (5 pts) What is the formula of a compound known to contain only arsenic and sulfur and analyzes for 48.31% As?

8. (6 pts) Which of the following salts are soluble in water? Circle all that are.

BaCl ₂	Na ₂ Cr ₂ O ₇	BaSO ₄
CaS	FeSO ₄	Ni(OH) ₂

- 9. (3 pts) Will a precipitate form if the following solutions are mixed?
 - Yes No $Ca(NO_3)_2(aq)$ and $Na_2CO_3(aq)$
 - Yes No AgNO3(aq) and KBr(aq)
 - Yes No $Pb(C_2H_3O_2)_2(aq)$ and $NaClO_4(aq)$
- 10. (4 pts) When a solution of copper(II) nitrate is mixed with aqueous potassium carbonate, a precipitate forms. Write the net ionic equation that takes place.

- 11. (8 pts) Write the formulas for these acids.
 - A. chloric acid
 - B. perchloric acid
 - C. chlorous acid
 - D. hypochlorous acid
 - E. sulfuric acid
 - F. nitric acid
 - G. bromous acid
 - H. iodic acid
- 12. (6 pts) Name these salts. Print.
 - A. KCIO
 - B. NaBrO₂
 - C. LilO₃
 - D. Ca(FO₄)₂
 - E. (NH₄)₂SO₄
 - F. Ca(NO₃)₂
- 13. (6 pts) Circle all of the strong electrolytes from this list.
- 14. (4 pts) Complete the reaction:

HNO₃(aq) + KOH(aq) →

Print your name below:

For DocM to complete:

Subtotal from exam:

Homework: (20 max)

Total:

Determine your grade: A+ ≥ 95; A ≥ 90; B+ ≥ 85; B ≥ 80; C+ ≥ 75; C ≥ 70; D ≥ 60

Answers

- 1. 2 PH₃ + 4 O₂ → P₂O₅ + 3 H₂O
- 2. $BaBr_2 + Na_2SO_4 \rightarrow BaSO_4 + 2 NaBr$
- 3. 1.93 x 10^{24} hydrogen atoms
- 4a. 4.00 mol F₂(g)
- 4b 430 g $\rm XeF_6$
- 4c 0.533 mol Xe and 1.526 mol of $F_2.\ F_2$ is the LR.
- 4d. 0.0244 mol Xe left over
- 5. 92 %
- 6. 8.90 mmol CuCl₂
- 7. As_2S_5
- 8. $BaCl_2$, $Na_2Cr_2O_7$, and $FeSO_4$
- 9. Yes, Yes, No
- 10. $Cu^{+2}(aq) + CO_3^{-2}(aq) \rightarrow CuCO_3(s)$

11. A. chloric acid HClO ₃
B. perchloric acid HClO ₄
C. chlorous acid HCIO ₂
D. hypochlorous acid HCIO
E. sulfuric acid H ₂ SO ₄
F. nitric acid HNO ₃
G. bromous acid HBrO ₂
H. iodic acid HIO ₃
12. A. KCIO potassium hypochlorite
B. NaBrO ₂ sodium bromite
C. LiIO ₃ lithium iodate
D. Ca(FO ₄) ₂ calcium perfluorate
E. $(NH_4)_2SO_4$ ammonium sulfate

- F. Ca(NO₃)₂ calcium nitrate
- 13. Ca(NO₃)₂, Lil, CuSO₄, HCl
- 14. HNO₃(aq) + KOH(aq) → KNO₃(aq) + H₂O(I)