Exam 4 Chm 205 (Dr Mattson) 2 May 2014

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Name:

Circle: Section A or Section C Folder group: H He Li Be B C N O F Ne Na Mg Al Si

Signature:

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for **how** you worked each problem as well as for the correct answer. If you need more space, use your scratch paper provided — Write: "See attached" in the answer box. Write your name on the scratch paper. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks and purses must be closed and stored on the floor under the table. Cell phones must be OFF and placed in your backpack/purse – not in your pocket.

- 1. (5 pts) Which process(es) is/are spontaneous under standard conditions. Circle all that apply.
 - A. freezing of water
 - B. corrosion of an iron nail left outdoors
 - C. sodium chloride precipitating from an unsaturated solution
 - D. a packet of sugar crystals dissolving in a cup of hot water
 - E. a strong acid and strong base reacting when mixed
- Consider the gas phase reaction represented at right:

2a (2 pts) Write the simplest balanced equation (smallest

whole number coefficients) for the reaction, using A for \bigcirc and B for \bigcirc .

- 2b (1 pt) Predict the sign for ΔS^0 for the circle + or reaction.
- 3. (1 pt) What is true regarding ΔH and ΔS for any phase change?
 - A. Both ΔH and ΔS are > 0
 - B. Both ΔH and ΔS are < 0
 - C. Both ΔH and ΔS have the same sign, + or -.
 - D. ΔH and ΔS have opposite signs.
- 4. Consider the combustion of ammonia:

$$H \operatorname{NH}_3(g) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{N}_2(g) + 6 \operatorname{H}_2\operatorname{O}(g)$$

4a. (3 pts) Use the provided data to determine ΔH^{o} :

$$4 \text{ NH}_3(g) + 3 \text{ O}_2(g) \longrightarrow 2 \text{ N}_2(g) + 6 \text{ H}_2\text{O}(g)$$

Answer with units:

4b. (3 pts) Use the provided data to determine ΔS^{o} :

$$4 \text{ NH}_3(g) + 3 \text{ O}_2(g) \longrightarrow 2 \text{ N}_2(g) + 6 \text{ H}_2\text{O}(g)$$

Answer with units:

4c. (3 pts) Use the values determined in 4a and 4b to determine ΔG^{0} .

- 4d. (1 pt) Under what conditions of temperature will the reaction be spontaneous?
- A. high temperatures only B. low temperatures only
- C. all temperatures D. It will never be spontaneous.
- 5. (3 pts) The combustion of ethanol is:

$$C_2H_5OH(I) + 3 O_2(g) \longrightarrow 2 CO_2(g) + 3 H_2O(g)$$

What are the signs of ΔG^0 , ΔH^0 , and ΔS^0 ?

	ΔG ^o	ΔH ^o	ΔS ^o
Circle + or -	+ or -	+ or -	+ or -

6. Consider the following reaction:

2 HgO(s) + 2 S(s)
$$4$$
 BgS(s) + O₂(g)
 $\Delta G^{o} = +8.0 \text{ kJ}$

6a (3 pts) Determine the equilibrium constant, K_p for this reaction at 298 K.

6b (6 pts) Under what circumstances would ∆G be negative for this reaction? Circle all that apply.

- A. High temperatures only.
- B. Low temperatures only.
- C. When $Q_p > K_p$
- D. When $Q_p < K_p$
- E. When P_{Ω_2} is zero or close to zero
- F. This reaction will never be spontaneous.
- 7. (3 pts) Which of these is a **galvanic** cell under standard conditions? Circle Yes or No.
- 7a. Yes or No Pb|Pb+2||Cd+2|Cd
- 7b. Yes or No Cu|Cu⁺²||Ag⁺|Ag
- 7c. Yes or No Ni|Ni⁺²||Sn⁺²|Sn

8. A galvanic cell is prepared using Zn|Zn⁺² and Cr|Cr⁺³ half cells.

8a. (3 pts) Determine E^o_{rxn}.

11. (4 pts) Balance the redox reaction in acidic solution,

showing all work.

Table of Standard Reduction Potentials

	E ⁰ (V)
$Cl_2 + 2 e \rightarrow 2Cl^-$	1.36
O_2 + 4 H ⁺ + 4 e ⁻ → 2H ₂ O	1.23
$Br_2 + 2 e \rightarrow 2Br^-$	1.09
Ag ⁺ + e ⁻ → Ag	0.80
$Fe^{+3} + e^{-} \rightarrow Fe^{+2}$	0.77
I ₂ + 2 e- → 2 I ⁻	0.54
$O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$	0.40
$Cu^{2+} + 2 e^- \rightarrow Cu$	0.34
$2H^+ + 2e^- \rightarrow H_2$	0.00
Fe ³⁺ + 3 e ⁻ → Fe	-0.036
Pb ²⁺ + 2 e ⁻ → Pb	-0.13
Sn ²⁺ + 2 e ⁻ → Sn	-0.14
Ni ²⁺ + 2 e ⁻ → Ni	-0.26
$Co^{2+} + 2e^{-} \rightarrow Co$	-0.28
PbSO ₄ + 2 e ⁻ → Pb + SO ₄ ²⁻	-0.35
$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40
Fe ²⁺ + 2 e ⁻ → Fe	-0.44
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
Cr ³⁺ + 3 e ⁻ → Cr	-0.73
Zn ²⁺ + 2 e ⁻ → Zn	-0.76
2 H ₂ O + 2 e ⁻ → H ₂ + 2OH ⁻	-0.83
Mn ²⁺ + 2 e ⁻ → Mn	-1.18
Al ³⁺ + 3 e ⁻ → Al	-1.66
Mg ⁺² + 2 e ⁻ → Mg	-1.66
Na ⁺ + e⁻ → Na	-2.71
Ca ²⁺ + 2 e ⁻ → Ca	-2.76
Ba ²⁺ + 2 e ⁻ → Ba	-2.90
K ⁺ + e ⁻ → K	-2.92
Li ⁺ + e ⁻ → Li	-3.05

Useful equations for Thermodynamics: $\Delta G^{0} = \Delta H^{0} - T\Delta S^{0}$ $\Delta G = \Delta H - T\Delta S$ $\Delta G = \Delta G^{0} + R T \ln Q$ R = 8.314 J/mol K $\Delta G^{0} = - R T \ln K$

Useful equations for Electrochemistry: $E = E^{\circ} - \frac{0.0592}{n} \log Q = E^{\circ} - \frac{R}{n} T_{n} F \log Q$ $E^{\circ} = \frac{0.0592}{n} \log K = \frac{R}{n} T_{n} F \ln K$ $\Delta G = -nFE \quad \Delta G^{\circ} = -nFE^{\circ}$ $1 F = 96500 \text{ coul} = 1 \text{ mol } e^{-} = 96500 \text{ J/mol V}$ Charge (coul) = current (amps) x time(s)

Useful equations for Nuclear Chemistry: $ln(No/N_t) = kt$ $t_{1/2} = 0.693/k$

Thermodynamic Values:

Substance	MM (g/mol)	∆H° _f (kJ/mol)	∆G° _f (kJ/mol)	S° (J/K mol)
C(s) graphite	12	0	0	6
CO ₂ (g)	44	-393.5	-394	214
C ₂ H ₆ (g)	30	-84.7	-32.9	229.5
CH ₄ (g)	16	-75	-51	186
CCl ₄ (I)	154	-135	-65	216
Cl ₂ (g)	71	0	0	223
H ₂ (g)	2	0	0	131
HCI(g)	36.5	-92	-95	187
H ₂ O(I)	18	-286	-237	70
H ₂ O(g)	18	-242	-229	189
Fe(s)	56	0	0	27
Fe ₂ O ₃ (s)	160	-826	-740	90
N ₂ (g)	28	0	0	191
NH ₃ (g)	17	-46	-16	193
NO(g)	30	90	87	211
NO ₂ (g)	46	33	51	240
N ₂ O(g)	44	82	104	220
O ₂ (g)	32	0	0	205

1																	2
Н																	He
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
	50			50	60	61	60	60	64	<u>e</u> e	66	67	60	60	70	71	
			00	59	00	Dire	02	- 03 	04	00	00	0/	00 	- 09 T			
		Ce	Pr	Nd	Рm	Sm	Eu	Gđ	ID	Dy	HO	Er	Im	YD	Lu		
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Answers:

1. B, D, E 2. Consider the gas phase reaction represented at right: $2a A_2(g) + 2 B(g) \longrightarrow 2 AB_2(g)$ $2b \Delta S^0 < 0$ (-) 3. C 4a. ∆H^o = -1268 kJ 4b. $\Delta S^{\circ} = +129 \text{ J/K}$ $\Delta G^{0} = -1308 \text{ kJ}$ 4d. C 5. The signs of ΔG^0 , ΔH^0 , and ΔS^0 are all negative 6a K_p = 0.0396 6b A, D, E 7. (3 pts) Which of these is a galvanic cell under standard conditions? Circle Yes or No. 7. No, Yes, Yes 8. A **galvanic** cell is prepared using $Zn|Zn^{+2}$ and $Cr|Cr^{+3}$ half cells. 8a. E^o_{rxn}. = 0.03 v 8b. 2 Cr⁺³ + 3 Zn \rightarrow 3 Zn⁺² + 2 Cr 8c. A 9a. E = 0.073 v 9b ∆G = -14 kJ 9c ∆G^o -23 kJ 9d K_c, = $1.1 \times 10^{+4}$ 10a. Pb⁺² is the most easily reduced 10b. Ni⁺² would oxidize Zn, but not Pb 11. 14 H⁺ + Cr₂O₇⁻² + 6 Fe⁺² \longrightarrow 2 Cr⁺³ + 6 Fe⁺³ + 7 H₂O 12. 1.47 g 13. β 14a. k = 0.131 yr⁻¹ 14b. 3.78 % 15. $^{241}_{95}$ Am + $^{4}_{2}\alpha \rightarrow 2^{1}_{0}$ n + $^{243}_{97}$ Bk 16. $^{241}_{95}$ Am $\rightarrow ^{4}_{2}\alpha + ^{237}_{93}$ Np 17.¹/₂₆