EXAM ONE
CHM 203 (Dr. Mattson)
8 SEPTEMBER 2010

Print your name:	Circle your section:
Signature:	8:30 9:30

Instructions: Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your periodic table — Write: "See PT" in box and then attach the periodic table. BOX YOUR ANSWERS! Write legibly.

 (8 pts) Write the atomic symbols for the following elements.

aluminum	boron
zinc	fluorine
potassium	neon
sulfur	chlorine

2. (7 pts) Circle the element from each list that is an example of the family or group name.

alkali metal	В	N	0	F	Li
alkaline earth	K	Р	CI	Ca	Со
halogen	Br	S	Na	Zn	Cr
main group	Sc	Fe	Au	U	Xe
semimetal	С	Si	Sn	Cr	Ca
non-metal	Со	Li	N	Pb	Ag
actinide	Ag	Sc	Y	Ne	U

3. (4 pts) Convert 4.57 mL into μ L. Show all work,
starting with "Vol ="; give the units with every step
Express answer in scientific notation.

4. (3 pts) Write a "plan" with the looped arrows for
converting a volume in gallons into cm ³ . If you
were actually doing it, you would be given the
conversion of gallons into liters.

5.	(5 pts)	Co	nvert th	ne area	of Nebr	aska,	77,358	mi ² ,
i	into km	12.	Given:	1 mile :	= 1.606	km.		

6. (5 pts) The density of tungsten is 19.3 g/cm ³ .
What is the mass of a block of tungsten measuring
5.0 cm X 7.2 cm X 22 mm?

7. (4 pts) Bromine has a melting point of -7.2 $^{\circ}$ C. Express this value in $^{\circ}$ F. Given: $T_{c} = (T_{F} - 32)/1.8$

<u>'</u>	U	•	<u> </u>

8. (5 pts) A chunk of metal with a mass of 47.9 g has a volume of 7.84 mL. If it is known that the metal is one of these: titanium, vanadium, chromium, manganese or cobalt, which one is it?

Element, density	Show work here:
Ti, 4.54 g/ cm ³	
V, 6.11 g/ cm ³	
Cr, 7.19 g/ cm ³	
Mn, 7.44 g/ cm ³	
Co, 8.90 g/ cm ³	

- Suppose one heated sulfur and calcium metal together in a test tube. After some heating, one would observe a very bright flame that lasted only a second or two.
 - A. (3 pts) Each of the following occurs. Designate each as a physical (P) or chemical (C) change:
 - P C The sulfur melted as heat was applied.
 - P C Sulfur and metallic calcium formed calcium sulfide.
 - P C The calcium sulfide solidified.

- 9B. (1 pt) Referring again to the sulfur and calcium together in the test tube. Which term best describes the contents of the test tube prior to heating:
 - A. a heterogeneous mixture
 - B. a homogeneous mixture
 - C. a chemical compound
- 9c. (1 pt) The calcium sulfide produced is:
 - A. an ionic compound
 - B. a covalent molecular compound
- 10. (2 pts) Suppose Compounds A and B are related in that they are examples of the Law of Multiple Proportions. What do A and B have in common?
 - A. The same mass and volume
 - B. The same color and texture
 - C. The same melting and boiling point
 - D. The same list of atoms
 - E. The same chemical name
- 11. (9 pts) How many protons, neutrons and electrons are in each of the following?

	Protons	Neutrons	Electrons
$_{24}^{52}Cr$			
$^{31}_{15}P^{3-}$			
$^{88}_{38}Sr^{2+}$			

12 (3 pts) The molecule pictured here is dopamine; it consists of carbon (black spheres), hydrogen (small gray spheres), oxygen (large gray spheres) and nitrogen (speckled gray sphere). What is the formula for dopamine? Use the format CwHyNyOz.

$S_W H_X N_y O_z$.		

13.	Phosp	horus	exists	as	only	one	isot	ope.
-----	-------	-------	--------	----	------	-----	------	------

Α	. (1 pt) W	hat is thi	s isotope	? Use f	format $_{x}^{y}I$)

В.	(1	pt)	What	is the	exact	mass	of this	isotope?	

C. (2 pt) Imagine instead that phosphorus existed
as 50% the isotope you wrote in 13A, and 50% as
an isotope with a mass number two greater than
the first isotope. The atomic mass on the periodic
table would have to be changed to a value close
to:

A. 29 B. 30 C. 31 D. 32 E. 33

14. (6 pts) Characterize each of the following compounds as ionic or covalent-molecular just be inspecting the formula.

KCIO ₃	Ionic	Covalent-Molecular
$C_2H_3CI_3$	Ionic	Covalent-Molecular
SO ₂	Ionic	Covalent-Molecular
NaNO ₃	Ionic	Covalent-Molecular
$(NH_4)_2CO_3$	Ionic	Covalent-Molecular
CH ₄	Ionic	Covalent-Molecular

15. (10 points) Circle the formula that matches the ion names below

carbonate	CO ₃ ² -	CO ₄ ²⁻	CO ₃ -	CO ₂ -
nitrite	NO ₃ ²⁻	NO ₂ ²⁻	NO ₃ -	NO ₂ -
sulfate	SO ₃ -	SO ₃ ²⁻	SO ₄ ²⁻	SO ₄ -
thiocyanate	SCN ⁻	SCN ²⁻	SCN ₃ ² -	CN⁻
nitrate	NO ₂ -	NO ₂ ²⁻	NO ₃ -	NO ₃ ²⁻
ammonium	NH ₃ ⁺	NH ₃ -	NH ₄ -	NH ₄ ⁺
hydroxide	OH ²⁻	OH-	OH ₃ -	HO ₃ ²⁻
phosphate	PO ₄ ³ -	PO ₃ 3-	PO ₃ ² -	PO ₃ -
perchlorate	CIO-	CIO ₂ -	CIO ₃ -	CIO ₄ -
sulfide	S ²⁻	SO ₃ ²⁻	SO ₄ ²⁻	SO ₂ ²⁻

_	3	- 4	2
Print your name below:			
For DocM to complete:			
Subtotal from exam:			
Homework: (20 max)	_		
Total:			
Determine your grade:			

 $A+ \ge 95$; $A \ge 90$; $B+ \ge 85$; $B \ge 80$; $C+ \ge 75$; $C \ge 70$; $D \ge 60$

Answers

1. Al, Zn, K, S, B, F, Ne, Cl

2. Li, Ca, Br, Xe, Si, N, U

 $3.4.57 \times 10^3 \,\mu L$

4. gallons \rightarrow quarts \rightarrow L \rightarrow mL \rightarrow cm³

5. 199,500 km²

6. 1529 g

7. 19.0 °F

8. $d = 6.11 \text{ g/cm}^3$; vanadium

9A. P, C, P

9B. A

9c. A

10. D

11.

	Protons	Neutrons	Electrons
$_{24}^{52}Cr$	24	28	24
$^{31}_{15}P^{3-}$	15	16	18
$\frac{88}{38} Sr^{2+}$	38	50	36

12 C₈H₁₁NO₂

13A. $^{31}_{15}P$

B. 30.97 amu

C. 32

14. I, CM, CM, I, I, CM

15. CO_3^{2-} , NO_2^{-} , SO_4^{2-} , SCN^- , NO_3^{-} , NH_4^{+} , OH^- , PO_4^{-3-} , CIO_4^{-} , S^{2-}