# Exam 4 Chm 205 (Dr Mattson) 23 April 2013

**Academic Integrity Pledge:** In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

#### (1 pt) Signature:

**Instructions:** Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your data sheet — Write: "See data sheet" in the answer box and then hand the data sheet in with your exam. At your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks and purses must be stored in the front of the room. Cell phones must be OFF and placed at the front of the room.

| Use this information to answer      | <sup>r</sup> Questions 1 –6.             |
|-------------------------------------|------------------------------------------|
| Lead(II) fluoride, PbF <sub>2</sub> | K <sub>sp</sub> = 3.6 x 10 <sup>-8</sup> |
| Copper(I) chloride, CuCl            | K <sub>sp</sub> = 1.9 x 10 <sup>-7</sup> |

1. (2 pts) Write the K<sub>sp</sub> equilibrium expressions for both salts:

| for PbF <sub>2</sub> | for CuCl          |
|----------------------|-------------------|
| K <sub>sp</sub> =    | K <sub>sp</sub> = |

2. (3 pts) Consider a saturated solution of PbF<sub>2</sub> in pure water. What is the molar solubility of PbF<sub>2</sub>?



3. (4 pts) Which has the larger molar solubility, PbF<sub>2</sub> or CuCl? Show work.

Answer: Circle PbF<sub>2</sub> OR CuCl

- 4. (4 pt) Referring again to the saturated solution of PbF<sub>2</sub>, circle **all** that are correct.
  - (a) [Pb<sup>+2</sup>] = 2 x [F<sup>-</sup>]
  - (b) [F<sup>-</sup>] = 2 x [Pb<sup>+2</sup>]
  - (c) The system is at equilibrium.
  - (d) Solid is present.
- (3 pt) What would happen to the molar solubility of PbF<sub>2</sub> if each of the following happened? Circle I for Increase, D for Decrease, NC for No change

| (a) 1.0 M NaF(aq) was added:                                | Ι | D | NC |
|-------------------------------------------------------------|---|---|----|
| (b) 1.0 M Pb(NO <sub>3</sub> ) <sub>2</sub> (aq) was added: | I | D | NC |

(c) 
$$PbF_2(s)$$
 was added: I D NC

# 6. (3 pts) What is equilibrium [Cu<sup>+</sup>] in a solution in which the [Cl<sup>-</sup>] = 0.0250 M?



7. (10 pts) Predict the signs for  $\Delta G$  and  $\Delta S$  for each of the following.

| Process:                                              | ∆G    | ∆S    |
|-------------------------------------------------------|-------|-------|
| (a) Sugar dissolving in hot tea.                      | + 0 - | + 0 - |
| (b) Molten wax solidifying at                         | +0-   | + 0 - |
| room temperature.                                     | •     | •     |
| (c) Exhaled breath condensing in                      | +0-   | + 0 - |
| cold weather.                                         |       |       |
| (d) 2 HCl(aq) + Na <sub>2</sub> CO <sub>3</sub> (s) → | + 0 - | + 0 - |
| $H_2O(I) + 2 \text{ NaCl}(aq) + CO_2(g)$              |       | •     |
| (e) $C_3H_8(g)$ + 5 $O_2(g)$ →                        | + 0 - | + 0 - |
| $3 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$        | •     | •     |
|                                                       |       |       |

8. (2 pts) Which TWO of the processes in Question 7 MUST be exothermic BECAUSE of the signs you chose for  $\Delta G$  and  $\Delta S$ ? Circle only 2 choices.

Use the following thermodynamic data to answer Questions 9 - 14, which pertain to the reaction:

| $3 \text{ NO}(g) \rightarrow \text{N}_2\text{O}(g) + \text{NO}_2(g)$ |                                 |                                 |  |  |  |
|----------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|
|                                                                      | <b>∆H<sub>f</sub>o</b> , kJ/mol | <b>S</b> <sup>o</sup> , J/mol K |  |  |  |
| NO(g)                                                                | 90                              | 211                             |  |  |  |
| N <sub>2</sub> O(g)                                                  | 82                              | 220                             |  |  |  |
| NO <sub>2</sub> (g)                                                  | 33                              | 240                             |  |  |  |

#### 9. (4 pts) What is $\Delta G^{0}$ for the reaction?



10. (3 pts) Is this reaction:

- (a) entropy-favored? Circle: Yes OR No
- (b) exothermic? Circle: Yes OR No
- (c) spontaneous at 298K? Circle: Yes OR No
- 11. (3 pts) At what approximate temperature does this reaction come to equilibrium?

Answer with units:

12. (4 pts) What is  $\Delta G$  given the initial pressures of the gases are P<sub>NO</sub> = 0.10 atm, P<sub>N2O</sub> = 0.10 atm, and P<sub>NO2</sub> = 0.10 atm and 298 K?

Answer with units:

- (2 pts) In order for this reaction to reach equilibrium, it must shift: (only one answer)
  - (a) left because  $\Delta G > \Delta G^{0}$ .
  - (b) left because  $Q_p > K_p$ .
  - (c) right because  $\Delta G^0 > 0$ .
  - (d) right because  $Q_p < K_p$ .
  - (e) in neither direction because  $\Delta G = 0$ .
- 14. (3 pts) What is the equilibrium constant, K<sub>p</sub>, at 298 K?

Answer:\_\_\_\_\_

Use the table of standard reduction potentials on the data sheet to answer the remaining questions.

- 15. (6 pts) Consider these chemical species:  $Ag^+$  Ag  $Pb^{+2}$  Pb  $Zn^{+2}$  Zn
- (a) Which species is the most easily reduced? Ag<sup>+</sup> Ag Pb<sup>+2</sup> Pb Zn<sup>+2</sup> Zn
- (b) Which species is the strongest reducing agent?  $Ag^+$  Ag  $Pb^{+2}$  Pb  $Zn^{+2}$  Zn
- (c) Which species will react spontaneously with Pb?  $Ag^+ Ag Pb^{+2} Pb Zn^{+2} Zn$
- (6 pts) The following galvanic cell was constructed: Al|Al<sup>+3</sup>||Ni<sup>+2</sup>|Ni. Write the balanced

net ionic reaction and calculate E<sup>0</sup>. Identify the cathode half cell.



17. (3 pts) Calculate  $E^{o}$  for the reaction: Cu|Cu<sup>+2</sup>||Ag<sup>+</sup>|Ag

Answer with units:

18. (4 pts) Calculate the equilibrium constant, K<sub>c</sub>, for the galvanic cell in the previous problem.

Answer:

19. (4 pts) Calculate E for the reaction: Cu|Cu<sup>+2</sup>(1.00 M)||Ag<sup>+</sup>(0.010 M)|Ag



20. (4 pts) What can you conclude about all galvanic cells? Circle all that apply.

(a)  $E^{0} > 0$  (b) K > 1 (c) Q > K (d)  $\Delta G^{0} > 0$ 

21. (3 pts) How long would it take to electrodeposit 0.40 g cobalt from a solution of  $CoSO_4(aq)$  using a current of 3.0 amps? Report answer in seconds.

|                       | Answer with units: |
|-----------------------|--------------------|
| Subtotal from exam:   |                    |
|                       |                    |
| Folder work: (20 max) |                    |
| Total:                |                    |

### Name:

| 1                                                                                      | 2                                                                    | 3                                                        | 4                                                              | 5                                                              | 6                                                             | 7                                                              | 8                                                               | 9                                                               | 10                                                             | 11                                                              | 12                                                              | 13                                                              | 14                                                             | 15                                                              | 16                                                           | 17                                                   | 18                                                           |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 1                                                                                      |                                                                      |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 |                                                                 |                                                                |                                                                 |                                                              | 1                                                    | 2                                                            |
| H                                                                                      |                                                                      |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 |                                                                 |                                                                |                                                                 |                                                              | н                                                    | He                                                           |
| 1.01                                                                                   |                                                                      |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 |                                                                 |                                                                |                                                                 |                                                              | 1.01                                                 | 4.00                                                         |
| 3                                                                                      | 4                                                                    |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 | 5                                                               | 6                                                              | 7                                                               | 8                                                            | 9                                                    | 10                                                           |
| Li                                                                                     | Be                                                                   |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 | В                                                               | C                                                              | N                                                               | 0                                                            | F                                                    | Ne                                                           |
| 6.94                                                                                   | 9.01                                                                 |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 | 10.81                                                           | 12.01                                                          | 14.01                                                           | 16.00                                                        | 19.00                                                | 20.18                                                        |
| 11                                                                                     | 12                                                                   |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 | 13                                                              | 14                                                             | 15                                                              | 16                                                           | 17                                                   | 18                                                           |
| Na                                                                                     | Ma                                                                   |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 |                                                                 | Si                                                             | P                                                               | S                                                            | CL                                                   | Ar                                                           |
| 22.99                                                                                  | 24.31                                                                |                                                          |                                                                |                                                                |                                                               |                                                                |                                                                 |                                                                 |                                                                |                                                                 |                                                                 | 26.98                                                           | 28.09                                                          | 30.97                                                           | 32.06                                                        | 35.45                                                | 39.95                                                        |
| 19                                                                                     | 20                                                                   | 21                                                       | 22                                                             | 23                                                             | 24                                                            | 25                                                             | 26                                                              | 27                                                              | 28                                                             | 29                                                              | 30                                                              | 31                                                              | 32                                                             | 33                                                              | 34                                                           | 35                                                   | 36                                                           |
| <b>v</b>                                                                               | Cal                                                                  | Sa                                                       | Ti                                                             | V                                                              | Cr                                                            | Mn                                                             | F۵                                                              | Co                                                              | Ni                                                             | Cu                                                              | 7n                                                              | Ga                                                              | Go                                                             | Δc                                                              | 60                                                           | Br                                                   | Kr                                                           |
|                                                                                        | La                                                                   |                                                          |                                                                | V                                                              |                                                               |                                                                |                                                                 |                                                                 |                                                                | l Gu                                                            |                                                                 | ua                                                              |                                                                | I A S                                                           |                                                              | DI                                                   |                                                              |
| <b>N</b><br>39.10                                                                      | 40.08                                                                | 44.96                                                    | 47.90                                                          | <b>V</b><br>50.94                                              | 52.00                                                         | 54.94                                                          | 55.85                                                           | 58.93                                                           | 58.70                                                          | 63.55                                                           | 65.38                                                           | 69.72                                                           | 72.59                                                          | 74.92                                                           | 78.96                                                        | 79.90                                                | 83.80                                                        |
| 39.10<br>37                                                                            | 40.08<br>38                                                          | 44.96<br>39                                              | 47.90<br>40                                                    | 50.94<br>4 1                                                   | 52.00<br>42                                                   | 54.94<br>43                                                    | 55.85<br>44                                                     | 58.93<br>45                                                     | 58.70<br>46                                                    | 63.55<br>47                                                     | 65.38<br>48                                                     | 69.72<br>49                                                     | 72.59<br>50                                                    | 74.92<br>51                                                     | 78.96<br>52                                                  | 79.90<br>53                                          | 83.80<br>54                                                  |
| 39.10<br>37<br><b>Rb</b>                                                               | 40.08<br>38<br>Sr                                                    | 44.96<br>39<br><b>Y</b>                                  | 47.90<br>40<br><b>Zr</b>                                       | 50.94<br>41<br><b>Nb</b>                                       | 52.00<br>42<br><b>Mo</b>                                      | <sup>54.94</sup><br>43<br><b>T C</b>                           | 55.85<br>44<br><b>Ru</b>                                        | 58.93<br>45<br><b>Rh</b>                                        | 58.70<br>46<br><b>Pd</b>                                       | 63.55<br>47<br><b>Ag</b>                                        | 65.38<br>48<br><b>Cd</b>                                        | 69.72<br>49<br><b>In</b>                                        | 72.59<br>50<br><b>Sn</b>                                       | 74.92<br>51<br><b>Sb</b>                                        | 52<br>52<br><b>Te</b>                                        | 79.90<br>53                                          | 83.80<br>54<br>Xe                                            |
| 39.10<br>37<br><b>Rb</b><br>85.47                                                      | 40.08<br>38<br><b>Sr</b><br>87.62                                    | 44.96<br>39<br><b>Y</b><br>88.91                         | 47.90<br>40<br><b>Zr</b><br>91.22                              | 50.94<br>41<br><b>Nb</b><br>92.91                              | 52.00<br>42<br><b>Mo</b><br>95.94                             | 54.94<br>43<br><b>TC</b><br>97                                 | 55.85<br>44<br><b>Ru</b><br>101.07                              | 58.93<br>45<br><b>Rh</b><br>102.91                              | 58.70<br>46<br><b>Pd</b><br>106.4                              | 63.55<br>47<br><b>Ag</b><br>107.87                              | 65.38<br>48<br><b>Cd</b><br>112.41                              | 69.72<br>49<br><b>In</b><br>114.82                              | 72.59<br>50<br><b>Sn</b><br>118.69                             | 74.92<br>51<br><b>Sb</b><br>121.75                              | 78.96<br>52<br><b>Te</b><br>127.60                           | 79.90<br>53<br>126.90                                | 83.80<br>54<br>Xe<br>131.30                                  |
| 39.10<br>37<br><b>Rb</b><br>85.47<br>55                                                | 40.08<br>38<br>Sr<br>87.62<br>56                                     | 44.96<br>39<br><b>Y</b><br>88.91<br>57                   | 47.90<br>40<br><b>Zr</b><br>91.22<br>72                        | 50.94<br>41<br><b>Nb</b><br>92.91<br>73                        | 52.00<br>42<br><b>Mo</b><br>95.94<br>74                       | 54.94<br>43<br><b>TC</b><br>97<br>75                           | 55.85<br>44<br><b>Ru</b><br>101.07<br>76                        | 58.93<br>45<br><b>Rh</b><br>102.91<br>77                        | 58.70<br>46<br><b>Pd</b><br>106.4<br>78                        | 63.55<br>47<br><b>Ag</b><br>107.87<br>79                        | 65.38<br>48<br><b>Cd</b><br>112.41<br>80                        | 69.72<br>49<br><b>In</b><br>114.82<br>81                        | 72.59<br>50<br><b>Sn</b><br>118.69<br>82                       | 74.92<br>51<br><b>Sb</b><br>121.75<br>83                        | 78.96<br>52<br><b>Te</b><br>127.60<br>84                     | 79.90<br>53<br>126.90<br>85                          | 83.80<br>54<br><b>Xe</b><br>131.30<br>86                     |
| **************************************                                                 | 40.08<br>38<br>Sr<br>87.62<br>56<br>Ba                               | 44.96<br>39<br>Y<br>88.91<br>57<br>La                    | 47.90<br>40<br><b>Zr</b><br>91.22<br>72<br><b>Hf</b>           | 50.94<br>41<br><b>Nb</b><br>92.91<br>73<br><b>Ta</b>           | 52.00<br>42<br>Mo<br>95.94<br>74<br>W                         | 54.94<br>43<br><b>T C</b><br>97<br>7 5<br><b>R e</b>           | 55.85<br>44<br><b>Ru</b><br>101.07<br>76<br><b>Os</b>           | 58.93<br>45<br><b>Rh</b><br>102.91<br>77<br><b>Ir</b>           | 58.70<br>46<br>Pd<br>106.4<br>78<br>Pt                         | 63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b>           | 65.38<br>48<br>Cd<br>112.41<br>80<br>Ha                         | 69.72<br>49<br>10<br>114.82<br>81<br><b>Ti</b>                  | 72.59<br>50<br><b>Sn</b><br>118.69<br>82<br><b>Pb</b>          | 74.92<br>51<br><b>Sb</b><br>121.75<br>83<br><b>Bi</b>           | 78.96<br>52<br>Te<br>127.60<br>84<br>Po                      | DI<br>79.90<br>53<br>I<br>126.90<br>85<br>At         | 83.80<br>54<br>Xe<br>131.30<br>86<br><b>Rn</b>               |
| 39.10<br>37<br><b>Rb</b><br>85.47<br>55<br><b>Cs</b><br>132.91                         | 40.08<br>38<br><b>Sr</b><br>87.62<br>56<br><b>Ba</b><br>137.33       | 39<br>¥<br>88.91<br>57<br>La<br>138.91                   | 47.90<br>40<br><b>Zr</b><br>91.22<br>72<br><b>Hf</b><br>178.49 | 50.94<br>41<br><b>Nb</b><br>92.91<br>73<br><b>Ta</b><br>180.95 | 52.00<br>42<br>Mo<br>95.94<br>74<br>W<br>183.85               | 54.94<br>43<br><b>T C</b><br>97<br>7 5<br><b>R e</b><br>186.21 | 55.85<br>44<br><b>Ru</b><br>101.07<br>76<br><b>Os</b><br>190.2  | 58.93<br>45<br><b>Rh</b><br>102.91<br>77<br><b>Ir</b><br>192.22 | 58.70<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.09               | 63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b><br>196.97 | 65.38<br>48<br>Cd<br>112.41<br>80<br>Hg<br>200.59               | 69.72<br>49<br>114.82<br>81<br><b>Ti</b><br>204.37              | 72.59<br>50<br><b>Sn</b><br>118.69<br>82<br><b>Pb</b><br>207.2 | 74.92<br>51<br><b>Sb</b><br>121.75<br>83<br><b>Bi</b><br>208.98 | 78.96<br>52<br>Te<br>127.60<br>84<br>Po<br>209               | 79.90<br>53<br>1<br>126.90<br>85<br><b>At</b><br>210 | 83.80<br>54<br>Xe<br>131.30<br>86<br><b>Rn</b><br>222        |
| <b>R</b><br>39.10<br>37<br><b>Rb</b><br>85.47<br>55<br><b>CS</b><br>132.91<br>87       | 40.08<br>38<br><b>Sr</b><br>87.62<br>56<br><b>Ba</b><br>137.33<br>88 | 39<br>39<br>Y<br>88.91<br>57<br>La<br>138.91<br>89       | 47.90<br>40<br><b>Zr</b><br>91.22<br>72<br><b>Hf</b><br>178.49 | 50.94<br>41<br><b>Nb</b><br>92.91<br>73<br><b>Ta</b><br>180.95 | 52.00<br>42<br><b>MO</b><br>95.94<br>74<br><b>W</b><br>183.85 | 54.94<br>43<br><b>T C</b><br>97<br>7 5<br><b>R e</b><br>186.21 | 55.85<br>44<br><b>Ru</b><br>101.07<br>76<br><b>Os</b><br>190.2  | 58.93<br>45<br><b>Rh</b><br>102.91<br>77<br><b>Ir</b><br>192.22 | 58.70<br>46<br><b>Pd</b><br>106.4<br>78<br><b>Pt</b><br>195.09 | 63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b><br>196.97 | 65.38<br>48<br><b>Cd</b><br>112.41<br>80<br><b>Hg</b><br>200.59 | 69.72<br>49<br><b>In</b><br>114.82<br>81<br><b>Ti</b><br>204.37 | 72.59<br>50<br><b>Sn</b><br>118.69<br>82<br><b>Pb</b><br>207.2 | 74.92<br>51<br><b>Sb</b><br>121.75<br>83<br><b>Bi</b><br>208.98 | 78.96<br>52<br><b>Te</b><br>127.60<br>84<br><b>Po</b><br>209 | 79.90<br>53<br>1<br>126.90<br>85<br><b>At</b><br>210 | 83.80<br>54<br><b>Xe</b><br>131.30<br>86<br><b>Rn</b><br>222 |
| ×<br>39.10<br>37<br><b>Rb</b><br>85.47<br>55<br><b>Cs</b><br>132.91<br>87<br><b>Fr</b> | 40.08<br>38<br>Sr<br>87.62<br>56<br>Ba<br>137.33<br>88<br>Ra         | 39<br>39<br>Y<br>88.91<br>57<br>La<br>138.91<br>89<br>AC | 47.90<br>40<br><b>Zr</b><br>91.22<br>72<br><b>Hf</b><br>178.49 | 50.94<br>41<br><b>Nb</b><br>92.91<br>73<br><b>Ta</b><br>180.95 | 52.00<br>42<br>MO<br>95.94<br>74<br>W<br>183.85               | 54.94<br>43<br><b>T C</b><br>97<br>7 5<br><b>R e</b><br>186.21 | 55.85<br>44<br><b>Ru</b><br>101.07<br>76<br><b>O S</b><br>190.2 | 58.93<br>45<br><b>Rh</b><br>102.91<br>77<br><b>Ir</b><br>192.22 | 58.70<br>46<br>Pd<br>106.4<br>78<br>Pt<br>195.09               | 63.55<br>47<br><b>Ag</b><br>107.87<br>79<br><b>Au</b><br>196.97 | 65.38<br>48<br><b>Cd</b><br>112.41<br>80<br><b>Hg</b><br>200.59 | 69.72<br>49<br><b>In</b><br>114.82<br>81<br><b>Ti</b><br>204.37 | 72.59<br>50<br><b>Sn</b><br>118.69<br>82<br><b>Pb</b><br>207.2 | 74.92<br>51<br><b>Sb</b><br>121.75<br>83<br><b>Bi</b><br>208.98 | 78.96<br>52<br>Te<br>127.60<br>84<br>Po<br>209               | 79.90<br>53<br>1<br>126.90<br>85<br><b>At</b><br>210 | 83.80<br>54<br><b>Xe</b><br>131.30<br>86<br><b>Rn</b><br>222 |

# Useful equations:

|                                            | Reduction Half-Reaction                  |                                                                 |        |  |  |
|--------------------------------------------|------------------------------------------|-----------------------------------------------------------------|--------|--|--|
| 20 - 211 - 123                             | $F_2(g) + 2 e^-$                         | $\longrightarrow 2 F^{-}(aq)$                                   | 2.87   |  |  |
|                                            | $H_2O_2(aq) + 2 H^+(aq) + 2 e^-$         | $\longrightarrow 2 H_2O(l)$                                     | 1.78   |  |  |
| 29 - 211 - 123                             | $MnO_4^{-}(aq) + 8 H^{+}(aq) + 5 e^{-}$  | $\longrightarrow$ Mn <sup>2+</sup> (aq) + 4 H <sub>2</sub> O(l) | 1.51   |  |  |
| R = 8.314.1/mol K                          | $Cl_2(g) + 2 e^{-1}$                     | $\longrightarrow 2 \operatorname{Cl}^{-}(aq)$                   | 1.36   |  |  |
|                                            | $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$  | $\rightarrow$ 2 Cr <sup>3+</sup> (aq) + 7 H <sub>2</sub> O(l)   | 1.36   |  |  |
| $AG = AG^0 + RT \ln O$                     | $O_2(g) + 4 H^+(aq) + 4 e^-$             | $\longrightarrow 2 H_2O(l)$                                     | 1.23   |  |  |
|                                            | $Br_2(aq) + 2 e^{-1}$                    | $\longrightarrow 2 \operatorname{Br}^{-}(aq)$                   | 1.09   |  |  |
| $AC^{0} = DTIm K$                          | $Ag^+(aq) + e^-$                         | $\longrightarrow$ Ag(s)                                         | 0.80   |  |  |
| $\Delta G^{*} = -R + I + I + K$            | $Fe^{3+}(aq) + e^{-}$                    | $\longrightarrow$ Fe <sup>2+</sup> (aq)                         | 0.77   |  |  |
|                                            | $O_2(g) + 2 H^+(aq) + 2 e^-$             | $\longrightarrow$ H <sub>2</sub> O <sub>2</sub> (aq)            | 0.70   |  |  |
| $E = E^{\circ} - 0.0392/n \log Q$          | $I_2(s) + 2 e^-$                         | > 2 I⁻(aq)                                                      | 0.54   |  |  |
|                                            | $O_2(g) + 2 H_2O(l) + 4 e^{-1}$          | $\longrightarrow 4 \text{ OH}^{-}(aq)$                          | 0.40   |  |  |
| $E^{o} = \frac{0.0592}{n} \log K$          | $Cu^{2+}(aq) + 2e^{-}$                   | $\longrightarrow Cu(s)$                                         | 0.34   |  |  |
|                                            | $Sn^{4+}(aq) + 2e^{-}$                   | $\longrightarrow$ Sn <sup>2+</sup> (aq)                         | 0.15   |  |  |
| $\Delta G = -nFE  \Delta G^{o} = -nFE^{o}$ | 2 H <sup>+</sup> (aq) + 2 e <sup>-</sup> | $\longrightarrow$ H <sub>2</sub> (g)                            | 0      |  |  |
| 1  Foreday(F) = 06500  and  =              | $Pb^{2+}(aq) + 2e^{-}$                   | $\longrightarrow Pb(s)$                                         | - 0.13 |  |  |
| 1 Faladay(F) – 90500 coul –                | $Ni^{2+}(aq) + 2e^{-}$                   | $\longrightarrow$ Ni(s)                                         | - 0.26 |  |  |
|                                            | $Cd^{2+}(aq) + 2e^{-}$                   | $\longrightarrow$ Cd(s)                                         | -0.40  |  |  |
| 1  mol e = 96500  J/mol V                  | $Fe^{2+}(aq) + 2e^{-}$                   | $\longrightarrow$ Fe(s)                                         | -0.45  |  |  |
| Charge = current x time                    | $Zn^{2+}(aq) + 2e^{-}$                   | $\longrightarrow$ Zn(s)                                         | - 0.76 |  |  |
|                                            | $2 H_2O(l) + 2 e^{-1}$                   | $\longrightarrow$ H <sub>2</sub> (g) + 2 OH <sup>-</sup> (aq)   | - 0.83 |  |  |
| (coul) = (amps) x (sec)                    | $Al^{3+}(aq) + 3e^{-}$                   | $\longrightarrow Al(s)$                                         | -1.66  |  |  |
|                                            | $Mg^{2+}(aq) + 2e^{-}$                   | $\longrightarrow$ Mg(s)                                         | - 2.37 |  |  |
|                                            | $Na^+(aq) + e^-$                         | $\longrightarrow$ Na(s)                                         | - 2.71 |  |  |
|                                            | $Li^+(aq) + e^-$                         | $\longrightarrow$ Li(s)                                         | - 3.04 |  |  |

Standard Reduction Potentials at 25 °C

## Answers:

1. K<sub>sp</sub> = [Pb<sup>+2</sup>] x [F<sup>-</sup>]<sup>2</sup>

K<sub>sp</sub> = [Cu<sup>+</sup>] x [Cl<sup>-</sup>]

2. x = 2.1 x 10<sup>-3</sup> M

 $3. PbF_2$ 

4. (b), (c), (d)

5. D, D, NC

6. 7.6 x 10<sup>-6</sup> M

7. (10 pts) Predict the signs for  $\Delta G$  and  $\Delta S$  for each of the following.

| Process:                                                                                                        | ∆G | ΔS |
|-----------------------------------------------------------------------------------------------------------------|----|----|
| (a) Sugar dissolving in hot tea.                                                                                | -  | +  |
| (b) Molten wax solidifying at room temperature.                                                                 | -  | I. |
| (c) Exhaled breath condensing in cold weather.                                                                  | -  | I. |
| (d) 2 HCl(aq) + Na <sub>2</sub> CO <sub>3</sub> (s) →<br>H <sub>2</sub> O(l) + 2 NaCl(aq) + CO <sub>2</sub> (g) | -  | +  |
| (e) $C_3H_8(g) + 5 O_2(g) \rightarrow$<br>3 $CO_2(g) + 4 H_2O(g)$                                               | -  | +  |

8. (b), (c)

- 9. What is  $\Delta G^{0}$  = -103.4 kJ
- 10. No, Yes, Yes

11. 896 K

12. (4 pts) What is  $\Delta G = -97.7 \text{ kJ}$ 

13. (d)

- 14. 1.3 x 10<sup>18</sup>
- 15. (a) Ag<sup>+</sup>; (b) Zn; (c) Ag<sup>+</sup>
- 16. (6 pts) The following galvanic cell was constructed: 2 Al + 3 Ni<sup>+2</sup> $\rightarrow$  2 Al<sup>+3</sup> + 3Ni; E<sup>0</sup> = 1.40 v; cathode half cell is Ni|Ni<sup>+2</sup>
- 17. E<sup>o</sup> = 0.46 v
- 18. 3.5 x 10<sup>15</sup>
- 19. E = 0.34 v
- 20. (a) and (b)
- 21. 437 s