Exam 3 Chm 205 (Dr Mattson) 1 April 2015

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Signature:

Name:

Circle your section: Section A or Section C Circle your Folder group:

H He Li Be B C N O F Ne Na Mg Al Si

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for **how** you worked each problem as well as for the correct answer. If you need more space, you may use the back of the data sheet provided — Write: "See Data Sheet" in the answer box and then submit data sheet with your exam. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks and bags must be closed and on the floor under the table. Cell phones must be OFF and placed in your backpack/bag — not in your pocket.

Note: All of these questions refer to aqueous solutions.

- 1. Acrylic acid, HC₃H₃O₂, shown here, is an important industrial chemical used in the production of polymers including plastics, coatings, adhesives, polishes, and paints. Over 10⁹ kg acrylic acid are produced annually. Ac
- H C = C OH O

acid are produced annually. Acrylic acid is miscible with water and has a pK $_a$ = 4.25. You may refer to acrylic acid as HAcr or by its formula HC $_3$ H $_3$ O $_2$.

- 1a. (2 pts) What is the numerical value of K_a?
- K_a =
- 1b. (4 pts) What is the conjugate base of acrylic acid and what is the numerical value of pK_h?

Conjugate base:

pK_b =

1c. (10 pts) Write the equilibrium constants, K, expressed in terms of K_a and/or K_w only. Fill in the arrows, either

→ or ←→ for each. The first one is done.

$HC_3H_3O_2 + OH^-$	$H_2O + C_3H_3O_2^-$	$K = K_a/K_w$
HC ₃ H ₃ O ₂ + H ₂ O	H ₃ O ⁺ + C ₃ H ₃ O ₂ ⁻	K =
H ₃ O ⁺ + OH ⁻	2 H ₂ O	K =
C ₃ H ₃ O ₂ ⁻ + H ₂ O	OH- + HC ₃ H ₃ O ₂	K =
C ₃ H ₃ O ₂ ⁻ + H ₃ O ⁺	H ₂ O + HC ₃ H ₃ O ₂	K =
2 H ₂ O	H ₃ O ⁺ + OH⁻	K =

1d. (3 pts) Solve for x. No partial credit.

$$5.50 = 5.70 + \log(\frac{0.15}{x})$$

Answer (a numerical value):

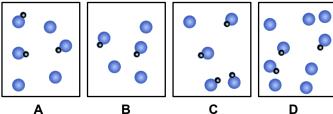
- 1e. (5 pts) Which would form a buffer? More than one!
 - A. 0.10 mol HAcr + 0.10 mol Acr in 500 mL H₂O
 - B. $0.10 \text{ mol HAcr} + 0.04 \text{ mol OH}^{-} \text{ in } 250 \text{ mL H}_{2}\text{O}$
 - C. 0.10 mol HAcr + 0.14 mol OH- in 100 mL H₂O
 - D. 0.10 mol $H_3O^+ + 0.10$ mol Acr⁻ in 500 mL H_2O
 - E. 5.0 g HAcr + 4.0 g NaAcr in 400 mL H₂O
- 1f. (3 pts) What is the pH of a solution prepared by dissolving 0.40 mol HAcr and 0.35 mol Acr⁻ in 250 mL water?

Answer:

- 1g. (1 pt) What will happen to the pH if another 50 mL water is added to the solution in the previous problem?
 - It will: $\ \square$ Increase $\ \square$ Decrease $\ \square$ Stay the same
- 1h. (1 pt) The solution in Question 1f has a larger buffer capacity towards the addition of...

Circle one: ☐ Strong acid ☐ Strong base ☐ Both

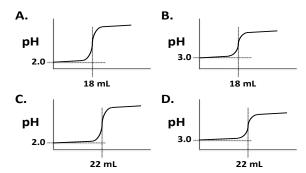
1i. (4 pts) What is the pH of the solution in Question 1f if 0.020 mol NaOH were added?


Answer:

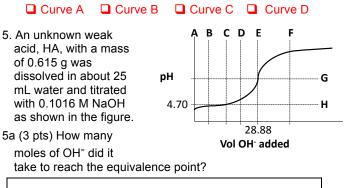
2. (4 pts) HF has a $K_a = 3.6 \times 10^{-4}$ and HCO_2H has a $K_a = 1.8 \times 10^{-4}$. What is the equilibrium constant, K_c for:

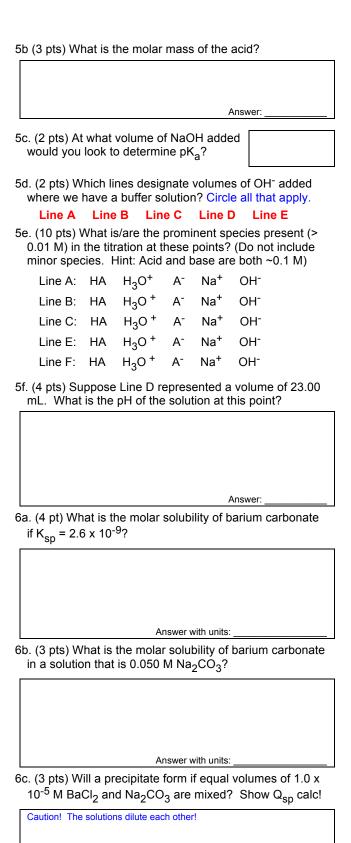
$$HCO_2H + F^- \longrightarrow HF + CO_2H^- K_c = ?$$

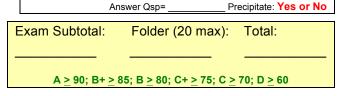
Answer:


3. These solutions are all buffers of the weak acid HB and its conjugate base, $\ensuremath{\mathsf{B}}^{\text{-}}.$

3a. (3 points) Suppose pK_a = 4.00 for HB. What is the pH of Solution B?


- 3b. (1 pt) Which buffer has the lowest pH? A B C D
- 3c. (1 pt) Which solution has the largest buffer capacity towards the addition of HCI? Circle: A B C D
- 4. Consider these four titrations curves, A, B, C, and D.


- 4a. (1 pt) What might be in the flask with the pH meter?


 HNO₃(aq) HClO₂(aq) NaOH(aq) NH₃(aq)
- 4b. (1 pt) Which of these chemicals might be in the buret?

 HNO₃(aq) HClO₂(aq) NaOH(aq) NH₃(aq)
- 4c. (2 pt) Which curve represents the largest concentration of acid and smallest concentration of base?

Answer:

Answers

1a.
$$K_a = 5.6 \times 10^{-5}$$

1b.
$$C_3H_3O_2^-$$
, of pK_b? pK_b = 9.75

1c.

$$HC_3H_3O_2 + OH^- + H_2O + C_3H_3O_2^- = K = K_a/K_w$$

$$HC_3H_3O_2 + H_2O \longleftrightarrow H_3O^+ + C_3H_3O_2^- \quad K = K_a$$

$$H_3O^+ + OH^- \longrightarrow 2 H_2O$$

$$C_3H_3O_2^- + H_2O \longleftrightarrow OH^- + HC_3H_3O_2 \quad K = K_W/K_a$$

$$C_3H_3O_2^- + H_3O^+ \longrightarrow H_2O + HC_3H_3O_2 \quad K = 1/K_a$$

$$2 H_2 O \longleftrightarrow H_3 O^+ + OH^- K = K_W$$

1d. 0.24; 1e. A, B, E; 1f. 4.19; 1g. Stay the same; 1h. Strong base; 1i. 4.24

2. 0.50

3a. 4.18; 3b. C; 3c. D

4a. HNO₃(aq); 4b. NaOH(aq); 4c. Curve C

5a 0.002934 mol; 5b 210 g/mol; 5c. 14.44 mL; 5d. **Line B Line C Line D** 5e.

Line A: HA H_3O^+ $A^ Na^+$ OH^-

Line B: HA H₃O + A- Na+ OH-

Line C: HA H₃O + A Na OH

Line E: HA H_3O^+ A Na^+ OH

Line F: HA H₃O + A Na OH

5f. 5.29

6a. 5.1 x 10⁻⁵ M

6b. 5.2 x 10⁻⁸ M

6c. $Q_{sp} = 2.5 \times 10^{-11}$; no precipitate