Exam Three	Print your name:	Circle your
CHM 205 (Dr. Mattson)		section:
20 March 2012	Signature:	8:30 9:30

Instructions: Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use your scratch paper — Write: "See attached" in box and then attach the scratch paper <u>with your name on it</u>. BOX YOUR ANSWERS! Write legibly.

1. (6 pts) Identify the following substances as acidic, basic or neutral. (Hint: Scratch out a table of wa and cwb on your data sheet to help you with some of these.)

(a) HOCI	acidic	basic	neutral
(b) KCN	acidic	basic	neutral
(c) NaBr	acidic	basic	neutral
(d) NH ₄ Cl	acidic	basic	neutral
(e) LiOH	acidic	basic	neutral
(f) NaC ₂ H ₃ O ₂	acidic	basic	neutral

2a. (6 pts) Complete the following table by providing the conjugate bases for phosphoric acid, H₃PO₄.

acid	рК _а	cwb	рК _b
H ₃ PO ₄	2.15		
H₂PO4⁻	7.20		
HPO4-2	12.37		

2b. (1 pt) What is the strongest weak base of the six species listed in the table.

- 3. (9 pts) What is K_n for these reactions? Answer should be numerical. [K_a for HCO₂H = 1.8 x 10⁻⁴]
- (a) $H_3O^+ + OH^- \iff 2 H_2O$

(b) $HCO_2H + OH^- \longleftrightarrow H_2O + CO_2H^-$

(c) $CO_2H^- + H_3O^+ \longleftrightarrow H_2O + HCO_2H$

- 4. (6 pts) Which of the following solutions would produce a buffer when mixed?
 - (a) 40 mL 0.20 M HOCI + 40 mL 0.30 M NaOCI
 - (b) 40 mL 0.30 M HOCI + 40 mL 0.20 M HCI
 - (c) 50 mL 0.20 M HCl + 20 mL 0.40 M NaCl
 - (d) 70 mL 0.20 M HF + 40 mL 0.30 M NaOCI
 - (e) 50 mL 0.20 M HCN + 20 mL 0.10 M NaOH
 - (f) 40 mL 0.20 M NaC₂H₃O₂ + 40 mL 0.30 M HCI
- 5a. (4 pts) Calculate the pH of a solution prepared by dissolving 0.022 mol $HC_7H_5O_2$ (pK_a = 4.21) and 0.051 mol $NaC_7H_5O_2$ in a suitable amount of water.

- 5b. (1 pts) Does this buffer (in 5a) have a larger buffer capacity towards strong acid or strong base? Circle: **Strong acid** or **Strong base** or **the same**
- 5c. (4 pts) What is the pH upon adding 0.005 mol HCl to the solution described in 5a?
- 6. (4 pts) What is the pH of a buffer prepared by reacting 40.0 mL 0.14 M $HC_2H_3O_2$ (pK_a = 4.74) with 20 mL 0.20 M NaOH.

- 7. (3 pts) Consider the titration of 50.00 mL 0.1119 M HNO₃ with NaOH(aq). Suppose it takes 38.24 mL of NaOH(aq) to reach a phenolphthalein endpoint. What is the molarity of the NaOH(aq)?
- Consider the titration of 25.00 mL 0.2040 M HNO₃ with 0.1882 M NaOH(aq).
- 8a. (3 pts) What volume of NaOH(aq) does it take to reach the equivalence point?
- 8b. (4 pts) What is the pH after 30.00 mL NaOH has been added?

8c. (2 pts) What is the pH at the equivalence point?

- 9. Consider the titration of 20.00 mL 0.0890 M HOBr(aq) (K_a = 2.0×10^{-9}) with 0.1100 M NaOH.
- 9a. (4 pts) What volume of NaOH is required to reach the equivalence point?
- 9b. (4 pts) What is the pH before any NaOH has been added?

- 9c. (4 pts) What is the pH after 10.00 mL NaOH has been added?
- 9d. (4 pts) What is the pH after 20.00 mL NaOH has been added?

9e. (4 pts) What is the pH at the equivalence point?

9f. (2 pts) What is the pH half-way to the equivalence point?

10. Consider the titration curve shown below.

10a. (2 pts) Give numerical values for pK_{a1} and pK_{a2} .

10b. (3 pts) Circle all possible substances that could give this sort of titration curve.

(a) $HCIO_2$ (b) H_2TeO_4 (c) H_3AsO_3 (d) H_2SO_3

Answers

1. acidic, basic, neutral, acidic, basic, basic

2a.

acid	рК _а	cwb	рК _b
H ₃ PO ₄	2.15	H₂PO₄⁻	11.85
H ₂ PO ₄ ⁻	7.20	HPO ₄ -2	6.80
HPO ₄ -2	12.37	PO ₄ -3	1.63

2b. PO₄-3

3. (a) K_n = 1 x 10⁺¹⁴

(b) $K_n = 1.8 \times 10^{+10}$

(c) $K_n = 5.6 \times 10^{+3}$

4. (a) and (e)

5a. 4.57

5b. Strong acid

5c. 4.44

6. 5.14

7. 0.146 M

8a. 27.10 mL

8b. 12.00

8c. 7

9a. 16.18 mL

9b. 4.87

9c. 8.91

9d. 12.02

9e. 10.70

9f. 8.70

10a. (2 pts) Give numerical values for pK_{a1} is about 2.5 and pK_{a2} is close to 9. I accepted values that were within +/- 0.2 pH units.

10b. (b) and (d)