Exam 2 Chm 205 (Dr Mattson) 2 March 2015

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Signature

Name:

Circle your section: Section A or Section C Circle your Folder group:

H He Li Be B C N O F Ne Na Mg Al Si

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for **how** you worked each problem as well as for the correct answer. If you need more space, you may use the back of the data sheet provided — Write: "See Data Sheet" in the answer box and then submit data sheet with your exam. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks and bags must be closed and on the floor under the table. Cell phones must be OFF and placed in your backpack/bag — not in your pocket.

 The following reaction is called the water-gas shift reaction and is an important part of a process used to produce hydrogen gas. This reaction takes place at very high temperatures and all species are gases.

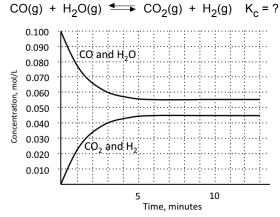
$$CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$$

1a. (4 pts) Write the equilibrium constants, $\rm K_{\rm C}$ and $\rm K_{\rm p}$ for this reaction in terms of concentrations, [CO], etc. or pressures, $\rm P_{\rm CO}$, etc.

$$K_c = K_p =$$

1b. (4 pts) Suppose 0.0500 mol CO(g) and 0.0300 mol H₂O(g) were placed in a 1.00 L vessel and heated to 600 K. At equilibrium, the [CO]_E was found to be 0.0214 M. What is K_c?

1c. (4 pts) At 800 K, K_c = 4.11. If 0.0400 mol CO(g) and 0.0400 mol H₂O(g) were placed in a 1.00 L vessel and heated to 800 K, what is the equilibrium concentration of carbon dioxide, $[CO_2]_E$? Hint: Quadratic not necessary.


1d. (2 pts) What is the numerical value of K_c at 800 K for this equilibrium?

1e. (3 pts) Suppose all four gases were present in the following amounts at 800 K: $[CO]_I = [H_2O]_I = 0.045$ M; and $[CO_2]_I = [H_2]_I = 0.075$ M. Is the system at equilibrium? If not, in which direction will it shift?

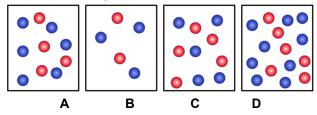
$$CO(g) + H_2O(g) \xrightarrow{\longleftarrow} CO_2(g) + H_2(g)$$

Answer: Yes OR No, must shift Left OR No, must shift Right

Questions 1f – 1j refer to the graph below. At 1000 K the reaction concentrations give this graph:

1f. (3 pts) Estimate K_c for the reaction using data from the graph. Hint: Read the graph carefully!

$$CO(g) + H_2O(g) \stackrel{\longleftarrow}{\longrightarrow} CO_2(g) + H_2(g)$$


1g. (5 pts) True or False

- T F The value for $rate_{fwd} = rate_{rev}$ after about 6 min.
- T F The value for $K_c = K_p$ for this reaction.
- T F If a catalyst were added, it would take less time to establish equilibrium.
- T F The equilibrium concentrations of the product gases would increase if a catalyst were added.
- T F The value for $k_{fwd} > k_{rev}$ at equilibrium.
- 1h. (2 pts) What would happen if more CO were added after 15 minutes?
 - i. Reaction would shift... Right Left Not shift
 - ii. K_c would... Increase Decrease Remain the same

- 1i. (2 pts) What would happen if the volume was doubled in size after 15 minutes?i. Reaction would shift... Right Left Not shift
- 1j. (2 pts) Given the reaction is exothermic, what would happen if the temperature were raised after 15 minutes?

ii. K_c would... Increase Decrease Remain the same

- i. Reaction would shift... Right Left Not shift
- ii. K_c would... Increase Decrease Remain the same
- 2. Vessel A is at equilibrium.

- 2a. (3 pts) Which other vessels are also at equilibrium? Circle all that apply. Circle: Vessel B Vessel C Vessel D
- 2b. (3 pts) What is the equilibrium constant for Blue Red?

Numerical answer: ______

3. (4 pts) Solve for x. No partial credit.

$$\frac{(0.75+x)}{(0.93-x)} = 2.11$$
Answer:

All of the following questions refer to aqueous solutions.

- 4. (5 pt) True or False.
 - T F pH = $-\log([H_3O^+])$
 - T F $[H_3O^+] \times [OH^-] = 1 \times 10^{14} \text{ at } 25 \text{ }^{\circ}\text{C}$
 - T F pH + pOH = 14.0 at 25 °C
 - T F $[H_3O^+] = 10^{-pH}$
 - T F $pK_a^{Wa} + pK_b^{Wb} = 14.0 \text{ at } 25 \text{ }^{\circ}\text{C}$
- 5. (4 pts) Which solution of each pair is the more acidic?
 - A. pH = 8.0
- OR pOH = 8.0
- B. pH = 5.5
- OR $[OH^{-}] = 1 \times 10^{-12}$
- C. pOH = 2.0
- OR $[H_3O^+] = 4 \times 10^{-4}$
- D. $[OH^{-}] = 1 \times 10^{-5}$ OR pH = 6.0
- 6. (4 pts) What is the pH of a 5.0×10^{-4} M KOH solution?

		Answer:	

7. (3 pts) Write the equilibrium expression (with appropriate arrows) and the K _a expression for HBrO ₂ .										
	s) A 0.500 M s What is the I					as pH	l of			
					Answe	r:				
	ts) What is th n: K _a = 3.5 x 1		0.40 N	/I sc	olution	of H	IOCI?			
 9b. (4 pt	ts) Given K _a t	for HOCI in	n the i		Answe		em, (i)			
	is the conjuga									
	Δn	swers: (i)			(ii)					
	ts) Write the	equilibrium			ion (w					
	priate arrows gate base of		K _b ex	pres	ssion	for th	е			
	ts) Identify ea									
	acid (WA), ne (SB), or more						uong			
A.	KOH	SA	WA	N	WB	SB	NMI			
В.	HBr	SA	WA	N	WB	SB	NMI			
C. D.	HF NaF	SA SA	WA WA	N N	WB WB	SB SB	NMI NMI			
D. Е.	Nar KBr	SA	WA	N	WB	SB	NMI			
F.	Na ₂ HPO ₄	SA	WA	N	WB	SB	NMI			
G.	NH_4NO_3	SA	WA	N	WB	SB	NMI			
Н.	NH ₄ F	SA	WA	N	WB	SB	NMI			
Exam S	Subtotal:	Folder (2	20 ma	ax):	To	tal:				
				,						

A > 90; B+ > 85; B > 80; C+ > 75; C > 70; D > 60

Answers

1a.
$$K_c = [CO_2][H_2]/[CO][H_2O]$$
 $K_p = P^{CO2 \times P H2} / P_{CO \times P H2O}$

1b. $K_c = 27.3$

1c. $[CO_2]_E = 0.0268 \text{ M}$

1d. $K_c = 0.243$

1e. $Q_c = 2.78$, therefore it shifts to the RIGHT

1f. $K_c = [CO_2][H_2]/[CO][H_2O] \sim 0.45 \times 0.45 / 0.55 \times 0.55 = 0.67$

1g. T T T F T

1h. i. Right; ii. Remain the same

1i. i. Not shift; ii. Remain the same

1j. i. Left; ii. Decrease

2a. **Vessel B Vessel D**

2b. Blue \longrightarrow Red? $K_c = [Red]/[Blue] = 0.67$

3. $X = 0.39$

4. T F T T T

5. A. $POH = 8.0$; B. $[OH^-] = 1 \times 10^{-12}$; C. $[H_3O^+] = 4 \times 10^{-4}$; D. $POH = 6.0$

6. $POH = 10.70$

7. $POH = 10.70$

7. $POH = 10.70$

8. $POH = 10.70$

9a. $POH = 10.70$

9a. $POH = 10.70$

9b. $POH = 10.70$

9c. $POH = 10.70$

7c. $POH = 10.70$

7d. $POH = 10.70$

8d. $POH = 10.70$

9a. $POH = 10.70$

9b. $POH = 10.70$

7c. $POH = 10.70$

7d. $POH = 10.70$

8d. $POH = 10.70$

8d. $POH = 10.70$

9a. $POH = 10.70$

9b. $POH = 10.70$

1c. $POH = 10.70$

1c. $POH = 10.70$

1d. $POH = 10.70$

1d. $POH = 10.70$

1d. $POH = 10.70$

1e. $POH = 10.70$

1f. $POH = 10.70$

1g. $POH =$