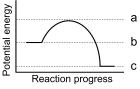
CHM 205 (Dr. Mattson)	section:
21 February 2012 Signature:	8:30 9:30

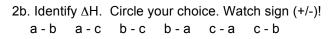
Instructions: Show all work whenever a calculation is required! You will receive credit for <u>how</u> you worked each problem as well as for the correct answer. If you need more space, you may use the back of your periodic table — Write: "See PT" in box and then attach the periodic table. BOX YOUR ANSWERS! Write legibly.

1. Consider the following reaction mechanism:

Step 1. A + A \rightarrow B fast


Step 2. $B \rightarrow C$ slow

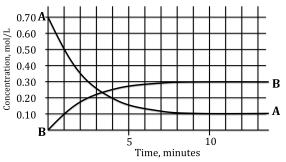
Step 3. C \rightarrow D + A fast


- (a) (2 pts) What is the overall reaction?
- (b) (1 pt) Which step determines the rate of the reaction? Circle: Step 1 Step 2 Step 3
- (c) (1 pt) Which step has the largest E_{act}? Circle: Step 1 Step 2 Step 3
- (d) (2 pts) Circle the intermediate(s): A B C D
- (e) (4 pts) Write the rate law for this mechanism.

Show all work!

2. (a-d: 1 pt ea) The reaction profile for $L \rightarrow R$ is:

2a. Is the reaction exothermic? Circle: Yes or No


2c. Identify E_{act}^{fwd} . Circle your choice:

a-b a-c b-c b-a c-a c-b

2d. Identify E_{act}^{rev} . Circle your choice: a - b a - c b - c b - a c - a c - b

2e. (4 pts) At equilibrium, circle all that apply:

A. $k_{fwd} = k_{rev}$ B. $k_{fwd} > k_{rev}$ C. $K_c = k_{fwd} / k_{rev}$ D. $rate_{fwd} = rate_{rev}$

3a. (3 pts) Use the graph above to create a MICE table for the reaction. Start by identifying changes (x values for the Change line) from the graph.

 $A(g) \rightarrow B(g)$ (unbalanced)

C E

Μ

L

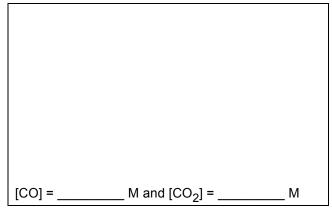
3b. (2 pts) Now write the balanced reaction.

3c. (3 pts) Write the K_c expression and determine a numerical value for K_c.

3d. (2 pts) How long does it take for the reaction to come to equilibrium?

3e. (1 pt) Does $K_p = K_c$ for this reaction? YES or NO

- 3f. (4 pts) The reaction is exothermic in the forward direction. What would happen if you raised the temperature? Circle:
 - $\left[\mathsf{A}\right]_{eq}$ increases, decreases or stays the same
 - $\left[\mathsf{B} \right]_{eq}$ increases, decreases or stays the same
 - K_c increases, decreases or stays the same
 - k_{fwd} increases, decreases or stays the same
- 3g. (4 pts) What would happen if the volume of the container decreased? Circle:


 $[B]_{eq}$ increases, decreases or stays the same

- K_c increases, decreases or stays the same
- $k_{\mbox{fwd}}$ $\,$ increases, decreases or stays the same
- k_{rev} increases, decreases or stays the same

4. Consider the reaction (all gases):

$$CO + H_2O \iff CO_2 + H_2 \quad K_c^{800 \text{ K}} = 4.92$$

- 4a. (2 pts) Write the equilibrium expression for K_c .
- 4b. (4 pts) Suppose a 1.00 L vessel was filled with 0.270 mol of CO(g) and 0.270 mol H₂O(g). Calculate the equilibrium concentrations for CO and CO₂. (It is not necessary to use quadratic!)

- 4c. (3 pts) Suppose instead, one started with [CO] = 0.20 M, $[H_2O] = 0.20 \text{ M}$, $[CO_2] = 0.50 \text{ M}$, $[H_2] = 0.50 \text{ M}$. Which direction would the reaction have to shift in order to attain equilibrium? Show work!
- 5a. (2 pts) Write the acid dissociation reaction (with appropriate arrows) for HOCI in water (e.g. $A \rightarrow B$).
- 5b. (1 pt) Circle the conjugate base in 5a.
- 5c. (2 pts) Write the K_a expression for HOCI(aq).
- 5d. (4 pts) The value of K_a for HOCI(aq) is 3.5 x 10⁻⁸. Calculate the pH of a 0.205 M HOCI(aq) solution.

- 5e. (2 pts) Is HOCI a stronger acid than HCN, $K_a =$
 - 3.5 x 10⁻¹⁰? Circle: Yes or No
- 5f. (3 pts) What is the percent dissociation in the 0.205 M HOCI(aq) solution?

6. (4 pts) Comple	te the following chart of conjugate
acid and base p	pairs.

Weak acid	Weak base
HNO ₂	
HOCI	
NH4 ⁺	
	F⁻

- 7. (1 pt) Which of these solutions is the most acidic?
 - A. pH = 4.25 B. $[H_3O^+]$ = 1.0 x 10⁻⁵ C. pH = 9.22
- 8. (4 pts) An acid solution, known to be 0.500 M has a pH = 3.55. What is the K_a for the acid?

- 9a. (3 pts) Write the weak base equilibrium expression for OCI⁻(aq). (Use long/short arrows.)
- 9b. (3 pts) Given K_a for HOCI (See 5d), what is the numerical value of K_b for OCI⁻(aq)?

9c. (4 pts) What is the pH of 0.0725 M NaOCI(aq)?

9d. (1 pt) Is HOCI a better weak acid than OCI⁻ is a weak base? Circle Yes or No

Answers

1. (a) A → D

(b) Step 2

(c) Step

(d) B C

(e) Starting with slow step, rate = $k_2[B]$. However, B is an intermediate, so we must substitute in actual reactants, products or the catalyst. From step 1, we know that rate_{fwd} = rate_{rev}. Therefore, $k_1[A]^2 = k_1[B]$ (or you could write $K_c = [B]/[A]^2$. Then solve for [B]:

[B] = $k_1/k_{-1}[A]^2$ or [B] = $K_c [A]^2$

Then, substitute in for [B] in rate = k_2 [B]:

rate =
$$k_2 k_1/k_{-1}[A]^2 OR$$

rate = $k_2 K_c [A]^2$

Either way, we gather the various k values into one k:

rate = $k [A]^2$

2. (a-d: 1 pt ea) The reaction profile for L \rightarrow R is:

2a. Yes, exothermic

2b. c - b

2c. a - b

2d. a - c

2e. B, C, D

За.

 M
 2 A(g)
 →
 B(g) (balanced)

 I
 0.7
 0

 C
 -2x
 +x

 E
 0.7 - 2x = 0.1
 x = 0.3

3b. 2 A → B

3c. $K_c = [B]/[A]^2 = 0.3/0.1^2 = 30$

3d. 8 min

3e. No

3f.

[A]_{eq}increases[B]_{eq}decreasesK_cdecreasesk_{fwd}increases

3g.

[B]_{eq}increasesK_cstays the samek_{fwd}stays the samek_{rev}stays the same

4a. K_c = [CO₂][H₂]/[CO][H₂O] = 4.92

4b. [CO] = 0.084 M and [CO₂] = 0.186 M

4c. Q_c = 6.25, therefore the reaction mixture shifts left in order to establish equilibrium

5a. HOCl(aq) + H₂O(I) $\leftarrow H_3O^+(aq) + OCI^-(aq)$

5b. OCI⁻(aq)

5c. $K_a = [H_3O^+][OCI^-]/[HOCI]$

5d. 4.07

5e. Yes

5f. 0.041%

0			
n			
~	٠		

Weak acid	Weak base
HNO ₂	NO2⁻
HOCI	OCI [_]
NH4 ⁺	NH ₃
HF	F⁻

7. A

8. K_a = 1.59 x 10⁻⁷

9a. $OCI^{-}(aq) + H_2O(I) \longleftarrow OH^{-}(aq) + HOCI(aq)$

9b. K_b = 2.86 x 10⁻⁷

9c. pH = 10.16