```
* IF covalent molecular, 1=1
                                                                                         24 January
                                                                                Today: 2020
             what is i for each of these in water?
                                                                               ofinish ch.13
sections 1-3 of ch14
             GH-10H1= NH4Br 1= $ 2
             Ca(NO3) 50 K3PO4 1=4
                                                                          →sunday/26:
                                                                           4 problem aubw/
            CoH120 1=1 CH3 COOH 1= berweren
                                                                           Kendall 6:30-8:00
                                        1 $ 2 (close to
                                                                                   Eppley 211
                                                                           M/W/F → Ch. 14
                                                                         Thursday: Expt. 2
             A 1.10 a Sample of an unknown hydrocarbon was dissolved in 25.0 a camphor. If the soin melts/freces at 162°C, what is its MM? Kfamphor 37.8
             to Thormai = 175°C ATF = Kf M.1
                                                                                           deg/mola!
             13.0 deq = 37.0 deg/mola1. m.1
                Kg campnor

N= 0.344 mol unknown | 0.0250 kg campnor = 8.60 × 10<sup>-3</sup> mol kg campnor

Kg campnor

Kg campnor

Kg campnor
                                                        mm = \frac{m_{unknown}}{n_{unknown}} = \frac{1.10 \, q}{8.60 \times 10^{-3} mq}
            If the unknown is 93.71% c, what is the molecular formula?
              100g sample. Go moves!
                                                                  - smallest
                 93.71g C - 12.01g/mol = 7.803 mol C
                                                                   1. 250
                                                                                        empinical formula
                 6.299H = 1.00891mol = 6.24 mol H
                                                                                     maleular
                                                                                   C10H8 1289/mg
            Osmotic Pressure, TT
                  M. R. T. 1 - 0.0821 Latm/moik
            what is the osmotic pressure of 0.075 M cacl2? (@ 298 K)
              TT = 0.075 moi 10.0821 Latin 298 K/3 = 00000 atm
            matis the MM of a non-electrolytic solute with mass 0.342g dissolved in 100 mg g H20 e 298 k? (giving an osmotic pressure of 550 mmHg)
                                                                             = = 760 mmHg = 0.724
              TT=M.R.T. jas M= TT = 200
                                                                                 =M=0.0296
MM = 0.3429
                                                                                       moi/L
      0.00296 MOIT
                              n= 0.0296 molune 10.100 L solin
                                                                            = 0.00296 mol
                                                                                 unk
```


Chapter 13 Number 4 (13.9) (Unit 1)

- 1. Circle the member of each pair with the higher predicted boiling point.
 - A. ethane OR propane
 - B. propanol OR propane
 - C. methanol OR methanal
 - D. propane OR propanoic acid
 - E. methane OR methyl amine
- Predict the value for i for each of these aqueous solutions.
 - A. 0.20 molal potassium nitrate
 - B. 0.10 M HCI(aq)
 - C. X_{glucose} = 0.220
 - D. 2.26 mass% sodium sulfate
 - E. $[CH_2O] = 0.117 M$
- 3. What is the osmotic pressure of a 0.150 M ammonium perchlorate solution at 25 °C?
- 4. A solution was prepared by dissolving 20.0 g of an unknown carbohydrate (C_xH_yO_z) in 50.0 g water and determining the freezing point of the solution to be -2.17 °C. What is the molar mass of the unknown? Given: K_z = 1.86 deg/molal

the unknown? Given: K _f = 1.86 deg/molal				

24 January 2020

5. A nitrate salt, thought to be LiNO₃, NaNO₃, KNO₃, RbNO₃ or CsNO₃, was dissolved in water. When 4.75 g of the salt was dissolved in water to make 100.0 mL solution, the osmotic pressure was determined to be 23 atm at 25 °C. What is the identity of the salt? What flame test color would you expect?

Questions in final exam format:

- 6. When ethylene glycol, HOCH₂CH₂OH, is added to the water in an automobile radiator, the effect is to
 - A. lower the boiling point and lower the freezing point.
 - B. lower the boiling point and raise the freezing point.
 - C. raise the boiling point and lower the freezing point.
 - D. raise the boiling point and raise the freezing point.
- 7. The coolant in automobiles is often a 50/50 % by volume mixture of ethylene glycol, $HOCH_2CH_2OH$, and water. At 20°C, the density of ethylene glycol is 1.1088 g/mL and the density of water is 0.9982 g/mL. Assuming that the volumes are additive, what is the expected freezing point of a 50/50(v/v)% ethylene glycol/water solution? $K_f = 1.86$ °C/m for water.
 - A. -16 °C
 - B. -17 °C
 - C. -30 °C
 - D. -33 °C
- 8. Red blood cells are placed into pure water. Which of the following statements is true?
 - A. Water molecules flow out of the red blood cells, causing them to collapse.
 - B. Water flows into the red blood cells, causing them to swell and burst.
 - C. The osmotic pressure of the cell contents increases, causing the cells to burst.
 - D. The osmotic pressure inside the cells equals the osmotic pressure outside.

Now try these problems from the book:

Section 13.9. (Osmotic pressure) Problems 19, 20, 21, 22, 23, 24, 34, 118, 120, 124, 128, 140, 142. Practice Test (page 530) 14, 15

Chapter 14 Number 1 (14.1 – 14.3) (Unit 1) 24 January 2020

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$

time	[N ₂ O ₅]	[NO ₂]	[O ₂]
0 s	2.330 mol/L	0	0
1000 s	1.260	2.140 moi/L	0.535 moi/L
2000 s	0.681	3.298 moi/L	0.829 mol/L
3000 s	0.369	3.922 mol/L	0.9805 mol/L
4000 s	0.199	4.202 moi/L	1.0 63 moi/L

BIGGER RATE (2x bigger)

1.07×103 moi N20

2. Is this reaction slowing down or speeding up with time? Circle: Slowing down or Speeding up

3. Sketch a tangent line on the graph and estimate the rate at t = 1000 s in terms of rate = $-\Delta[N_2O_5]/\Delta t$.

Make sure to use the right units.

4. Using your value from Question 3, what is the rate in terms of rate = $\Delta[NO_2]/\Delta t$ and rate = $\Delta[O_2]/\Delta t$

Would the rate of the reaction increase or decrease if one started with a larger [N2O5]?

Now try these problems from the book:

Section 14.1. (Rates) Problems 1, 2, 39, 52, 54, 56 and 58

Section 14.2. (Rate Law and Order) Problems 3 and 4

Section 14.3. (Initial rate method) Problems 5, 6, 7, 8, 40, 46, 60, 62, 64, 66 and 68

Practice Test, page 587, Question 1-5.