Exam 3 Chm 205 (Dr Mattson) 3 April 2019	Name:
Academic Integrity Pledge: In keeping with Creighton University's ideals a Academic Integrity Code, I pledge that this work is my own and that I have neith nor received inappropriate assistance in preparing it.	
	without a slipcover. Backpacks, bags, and purse-like items must be
1. (4 pts each) (a) Write the balanced net ionic equation for the neutralization reactions and include appropriate long/short arrows. (b) Then write the K_n expression in terms of concentration, and (c) calculate the numerical value for K_n . Given: K_a for HF = 3.5 x 10 ⁻⁴ . Remember that net ionic does not include spectator ions. HF(aq) and NaOH(aq)	4. (4 pts) How many moles of NaOH must be added to 250.0 mL 0.1500 M HC ₂ H ₃ O ₂ (pK _a = 4.74) in order to prepare a buffer with a pH = 5.00? Show all work for credit.
K _n =	Answer with units
HCI(aq) and KOH(aq)	5. Consider the <mark>titration curve for HA on the left</mark> to answer 5a – 5d. The NaOH used for both titrations is 0.200 M.
K _n =	рн 4.37 рн 2.77
HNO ₃ (aq) and NaF(aq)	28.28 mL 30.44 mL Vol OH ⁻ added Vol OH ⁻ added
K _n =	5a. (3 pts) Given 25.00 mL HA was titrated, what is the molarity of HA? Show all work for credit.
2. (5 pts) Which of these situations would form a buffer if dissolved in water to make 250 mL solution? Yes No 0.43 mol HNO_2 + 0.19 mol KOH Yes No 2.5 mol NaHSO ₃ + 0.70 mol HCI Yes No 50.0 mL 1.00 M HCIO ₂ + 6.48 g KCIO ₂	Answer with units 5b. (1 pt) What is the K _a for the acid? 5c. (4 pts) What is the pH after 10.00 mL NaOH have been added?
Yes No 0.51 mol HNO ₂ + 0.68 mol NaOH	Show all work for credit.
Yes No 0.44 mol NaHSO ₃ + 0.17 mol KOH	
3a. (4 pts) What is the pH of a buffer prepared by dissolving 2.90 g Na ₂ HPO ₄ (MM = 142 g/mol) into	Answer:
250.0 mL of 0.100 M NaH ₂ PO ₄ (pK _a = 6.59)? Show all work for credit.	 5d. (3 pts) Which three of these values would you need to calculate the pH at the equivalence point? [HA] at equiv. point K_b for A⁻ moles A⁻ at equiv. point Volutot at equiv. point Volume associated with pH = 7.00
Answer to the correct number of significant figures 3b. (4 pts) What pH results if 0.010 mol HCl is added to	5e. (5 pts) Consider the titration curve for HB on the right to answer these questions about HB.
the buffer in Question 3a? Show all work for credit.	 T F HB is a stronger weak acid than HA. T F The concentration of HB is larger than HA. T F After the equivalence point, the solution contains excess strong base.
Answer to the correct number of significant figures	 T F The pH at the equivalence point equals 7.00. T F Prior to the equivalence point, the solution is a buffer consisting of HB and B⁻.

6. (4 pts) (a) Write the first line of a MICE table for the dissolution process for each of these salts. (b) Also write the K_{sp} expression in terms of concentrations.

6a. Mg(OH)2

6b. Ba3(PO4)2

7. (4 pts) What is the molar solubility, **x**, of CaCO₃ given $K_{sp} = 5 \times 10^{-9}$?

Show work for credit.

Answer with units: _

8a. (4 pts) What is the molar solubility, **x**, and pH of Ca(OH)₂ given $K_{sp} = 5.5 \times 10^{-6}$?

Watch the sig figs on pH.

Molar solubility with units: ____

8b. (4 pts) What is the molar solubility of pH of Ca(OH)₂ in a pH = 12.00 buffer solution?

Show work for credit.

Answer: _

pH =

- 8c. (3 pts) What would happen to...
 - K_{sp} if some Ca(NO₃)₂ is added? Shift: R L No shift if some Ca²⁺ is added? Shift: Right Left No shift if some H₃O⁺ is added? Shift: Right Left No shift
- 8d. (1 pts) Is Ca(OH)₂ more soluble than CaCO₃ (Question 7)

Yes or No

- 9. (10 pts) Is ΔG^{o} spontaneous and ΔS^{o} favored for these processes? (C₃H₈ is propane, a combustible fuel.)
- 9b. $C_3H_8(g) + 5 O_2(g) \rightarrow$ 3 CO₂(g) + 4 H₂O(g)

9a. dissolving sugar in water

- 9c. $C_3H_8(I) \rightarrow C_3H_8(g)$ (normal bp -42°C)
- 9d. 2 NaCl(s) \rightarrow 2 Na(s) + Cl₂(g)
- 9e. Iron rusting in air to form iron oxides such as Fe₂O₃

	,
∆G ⁰ < 0?	ΔS ^o > 0?
Yes No	Yes No
∆G ^o < 0?	ΔS ^o > 0?
Yes No	Yes No
$\Delta G^{\circ} < 0?$	$\Delta S^{\circ} > 0?$
Yes No	Yes No
$\Delta G^{\circ} < 0?$	ΔS ⁰ > 0?
Yes No	Yes No
100 110	100 110
∆G ⁰ < 0?	ΔS° > 0?
Yes No	Yes No

10a. (3 pts) Calculate ΔG^{o} for the reaction: See data sheet.

 $2 \text{ NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{ H}_2(g)$

Answer with units:

10b. (3 pts) Calculate ΔS^{o} for the same reaction.

$$2 \text{ NH}_{3}(g) \rightarrow \text{N}_{2}(g) + 3 \text{ H}_{2}(g)$$
Answer with units:
$$1 \text{ pts}) \text{ Is the sign of } \Delta \text{S}^{0} \text{ what you}$$
Id have predicted?
$$Yes \text{ or } \text{No}$$
2 pts) Given $\Delta \text{H}^{0} = \pm 91.8 \text{ kJ}$ what can you conclude

- 10d. (2 pts) Given ΔH^0 = +91.8 kJ, what can you conclude about ΔG^0 ? Check only one box. The reaction is...
 - spontaneous at all temperatures, or
 never spontaneous at any temperature or
 - □ spontaneous at low temperatures only or
 - □ spontaneous at high temperatures only.
- 10e. (3 pts) If you checked the third or fourth box in the previous question, calculate the temperature at which the reaction switches from spontaneous to non-spontaneous. Otherwise, skip this question.

Show all work for credit.

10c. (

wou

Answer with units: _

10f. (4 pts) Estimate ΔG for the reaction at 350 K using the Gibbs-Helmholtz equation: $\Delta G = \Delta H - T\Delta S$

Show all work for credit.

Answer with units:

11a. (4 pts) Calculate ΔG for the reaction below at 298 K given ΔG^0 = +3.4 kJ, P_{H_2} = 1.0 atm, and P_{HI} = 5.0 atm.

 $H_2(g) + I_2(s) \rightarrow 2 HI(g)$

Answer:

11b. (3 pts) What is the equilibrium constant, K_p, for the above reaction at 298 K?

Show all work for credit.

Answer: ____

12. (2 pts) As a reaction proceeds undisturbed from initial concentrations or pressures ($I \rightarrow C \rightarrow E$), which two of these things happen? Circle only two.

$\Delta G^{0} \rightarrow 0$	$\Delta G \rightarrow 0$	$Q_p \rightarrow K_p$
$Q_p \rightarrow 0$	$K_p \rightarrow 1$	$\Delta G \rightarrow \Delta G^{0}$

Answers.

1. $HF(aq) + OH^{-}(aq) \longrightarrow H_2O + F^{-}$ $K_n = [F^-] / [HF] [OH^-]$ $K_n = 1/K_b = K_a/K_w = 3.5 \times 10^{+10}$ $H_3O^+(aq) + OH^-(aq) \longrightarrow 2 H_2O$ $K_n = 1 / [H_3O^+] [OH^-]$ $K_n = 1/K_w = 1.0 \times 10^{+14}$ $F^{-}(aq) + H_3O^{+}(aq) \longrightarrow H_2O + HF$ $K_n = [HF] / [F^-] [H_3O^+]$ $1/K_a = 2.9 \times 10^{+3}$ 2. Yes Yes Yes No Yes 3a. 6.50 3b. 6.06 4. 0.0242 mol 5b. 4.27 x 10⁻⁵ 5c. 4.11 5a. 0.226 M 5d. \Box K_b for A⁻ \Box moles A⁻ at equiv. point □ Vol_{tot} at equiv. point 5e.TTTFT 6a. Mg(OH)₂ ← Mg²⁺ 2 OH⁻ $K_{sp} = [Mg^{2+}] [OH^{-}]^{2}$ 6b. Ba₃(PO₄)₂ ← 3 Ba²⁺ + 2 PO₄³⁻ $K_{sp} = [Ba^{2+}]^3 [PO_4^{3-}]^2$ 7. x = 7.1 x 10^{-5} M 8a. x = 0.0111 M and pH = 12.35 8b. x = 0.056 M 8c. K_{sp} does not change Shift left H₃O⁺ decreases OH⁻ due to neutralization, therefore shift to the right. 8d. Yes $\Delta S^{o} > 0?$ Yes 9a. ∆G^o < 0? Yes 9b. ∆G^o < 0? Yes $\Delta S^{o} > 0?$ Yes 9c. ∆G^o < 0? Yes $\Delta S^{o} > 0?$ Yes 9d. ∆G^o < 0? No $\Delta S^{o} > 0?$ Yes $\Delta S^{o} > 0?$ No 9e. $\Delta G^{\circ} < 0$? Yes 10a. 33.2 kJ 10b. 197.7 J/K 10c. Yes 10d. spontaneous at high temperatures only. 10e. 464 K 10f. 22.6 kJ 11a. 11.37 kJ 11b. 0.254 12. $\Delta G \rightarrow 0$ $Q_p \rightarrow K_p$

Data sheet

Useful Formulas: $\Delta G = \Delta G^{\circ} + R T \ln Q = R T \ln(Q/K)$ $\Delta G^{\circ} = -R T \ln K$ $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ $R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$

K_w^{298}	=	1	Х	10-14
-------------	---	---	---	-------

	∆H _f o	ΔG_{f}^{o}	So
	kJ/mol	kJ/mol	J/mol K
H ₂ (g)	0	0	130.6
N ₂ (g)	0	0	191.5
O ₂ (g)	0	0	205.0
N ₂ H ₄ (g)	95.4	159.3	238.4
NH ₃ (g)	-45.9	-16.6	192.8
N ₂ O(g)	82.0	104.2	219.7
H ₂ O(g)	-241.8	-228.6	188.7
NO(g)	91.3	87.6	210.7

	_																
1																	2
H																	He
1.008		_															4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Ρ	S	CI	Ar
22.99	24.30											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55		69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Хе
85.47	87.62	88.91	91.22	92.91	95.94	(97)	101.1	102.9	106.4	107.9		114.8	118.7	121.8	127.6	• 126.9	131.3
55	56	71	72	73	74	75	76	77	78	79		81	82	83	84	85	86
Cs	Ва	Lu	Ηf	Та	W	Re	Os	lr	Ρt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
132.9	137.3	175.0	178.5	181.0	183.9	186.2	190.2	192.2	195.1		200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	(226)	(262)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(277)		(289)		(289)		(293)
		[E 7		EO	60	61	62	6.2	64	65	66	67	68	60	70	71	
		57		59	60	61		63				67		69 T	70	71	
		L			-							' Ho					
			3.9 140.														
		89		91	92	93	94	95	96	97	98	99	100				
		Α				Np						Es			-		
		(22	232.	0 231.	0 238.	0 237.	0 (244) (243) (247) (247) (251) (252	(257	') (258	3) (259) (260))