Exam 1 Chm 205 (Dr Mattson) 31 January 2018

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Name:

Chemistry Student Number:

Signature:

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for **how** you worked each problem as well as for the correct answer. If you need more space, you may use the back of the data sheet provided — Write: "See data sheet" in the answer box – then write your name on the data sheet. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks, bags, and purse-like items must be stored on the tables in the back of the room. Cell phones must be silent and placed in your backpack/bag/purse – not in your pocket.

1. (6 pts) Which solvent, either water or CCl₄, is expected to be better at dissolving the following solutes? Circle either H₂O or CCl₄ for each of these solutes.

1a. ethanol, CH₃CH₂OH: Soluble in: H₂O or CCl₄

- 1b. chloromethane, CH₃CI: Soluble in: H_2O or CCI_4
- 1c. ethanolc acid, CH₃COOH: Soluble in: H₂O or CCl₄
- 1d. ammonium acetate: Soluble in: H₂O or CCl₄
- 1e. benzene, C_6H_6 : Soluble in: H_2O or CCI_4
- 1f. hexane, C₆H₁₄: Soluble in: H₂O or CCl₄
- 2. A solution was prepared by dissolving 75.0 g ammonium bromide in 250.0 g water. Use this table to organize your calculations.

	ММ	mass, m	moles, n
NH ₄ Br	97.9 g mol ⁻¹		
H ₂ O	18.0 g mol ⁻¹		

2a. (4 pts) What is the mole fraction of NH₄Br?

2c. (4 pts) What is the molality of NH₄Br?

 (5 pts) A 1.70 M NaCl(aq) solution has a density of 1.069 g/cm³. What is the molality of NaCl?

	ММ	m	n	V
NaCl	58.5 g mol ⁻¹			
H ₂ O	18.0 g mol ⁻¹			
Solutio	n			

4. (4 pts) What is the van't Hoff factor for each solution?

4a. 0.25 M KI(aq)	i =	
4b. 0.15 molal CaCl ₂ (aq)	i =	
4c. 12.9 mass percent C ₂ H ₅ OH(aq)	i =	
4d. 0.10 mole fraction K ₃ PO ₄ (aq)	i =	

5. (5 pts) Benzene, C_6H_6 (MM = 78.1 g mol⁻¹), is a liquid

with a vapor pressure of 119.3 mmHg at 30.0 o C. Suppose 2.55 g naphthalene, a solid with formula C₁₀H₈ (MM = 128.2 g mol⁻¹), is dissolved in 40.0 g benzene. What is the vapor pressure of the solution?

6a. (5 pts) Suppose 4.44 g m-xylene, C₈H₁₀ (MM = 106.2

g mol⁻¹), with a vapor pressure of 11.6 mmHg at 30.0 $^{\circ}$ C is mixed with 8.88 g benzene. What is the vapor pressure of the solution? See Question 5 for C₆H₆ data.

6b. (2 pt) Are m-xylene and benzene miscible?

Yes or No

6c. (2 pt) What intermolecular forces best describes what is occurring with this solution? Circle your choice

London disp. H-bonding lon-dipole dipole-dipole

7. (5 pts) Benzene has a normal freezing point of 5.50 $^{\circ}$ C. Suppose 1.53 g of an unknown are dissolved in 65.0 g benzene and the solution has a freezing point of 3.90 $^{\circ}$ C. What is the molar mass, MM, of the unknown? Given K_f = 5.07 deg/molal for benzene.

Answer with units:

8. (5 pts) How much CaCl₂(s) (MM = 111 g/mol), in grams, should be added per kg H₂O in order to lower the freezing point to -5 °C? Given: $K_f = 1.86$ deg/molal

Answer with units:

9. (4 pts) What is the osmotic pressure of a 0.023 M Na_2SO_4 solution at 300 K? R = 0.0821 L atm mol⁻¹K⁻¹

Answer with units:

- 10. At 700 K, the reaction of HI to form H₂ and I₂ is second order in [HI] with a measured rate constant at 700 K of k = 1.8 x 10⁻³ L/mol s. The reaction is: $2 \text{ HI}(g) \rightarrow \text{H}_2(g) + \text{I}_2(g)$
- 10a. (3 pts) Write the rate law for this reaction.
- 10b. (4 pts) If the [HI]_o were 0.400 mol/L, how long would it take for [HI] = 0.250 mol/L?

Answer with units of seconds:

10c. (3 pts) What is the rate of the reaction at 700 K when [HI] = 0.200 M?

Answer with units:

10d. (3 pts) If, under certain conditions, the rate of the reaction, $-\Delta$ [HI]/ Δ t = 2.24 x 10⁻⁴ mol L⁻¹ s⁻¹, what is the rate of appearance of I₂, Δ [I₂]/ Δ t?

Answer with units:

11. The following initial concentration - initial rate data listed in the table were collected for the reaction:

 $NO_2(g) \rightarrow NO(g) + 1/2 O_2(g)$

Expt.	[NO ₂] _o	Initial rate = $-\Delta[NO_2]/\Delta t$
1	0.020 mol/L	1.35 x 10 ⁻² mol L ⁻¹ s ⁻¹
2	0.030	3.03 x 10 ⁻²
3	0.050	8.43 x 10 ⁻²
4	0.080	?

11a. (4 pts) What is the rate law? Answer with units: 11b. (4 pts) What is the value of the rate constant? Answer with units: 11c. (4 pts) What is the initial rate if $[NO_2]_0 = 0.080$ M? Answer with units: 12. Consider data collected for the hydrolysis reaction of sucrose, $C_{12}H_{22}O_{11}$, to form glucose and fructose: sucrose(aq) + $H_2O \rightarrow$ glucose(aq) + fructose(aq) Time (hr) [C12H22O11] (mol/L) 0.900 0.0 2.0 0.594 4.0 0.392 6.0 0.258 8.0 0.170 12a. (4 pts) A graph of the $ln[C_{12}H_{22}O_{11}]$ vs. time gives a straight-line. Determine the value of the rate constant. Answer with units: 12b. (4 pts) Determine $[C_{12}H_{22}O_{11}]$ when t = 5.3 hr. Answer with units: 12c. (4 pts) How long does it take until $[C_{12}H_{22}O_{11}] =$ 0.550 M? Answer with units: 12d. (4 pts) What is the half-life for this reaction? Answer with units: 12e. (4 pts)) How long does it take until [C₁₂H₂₂O₁₁] drops to 70% of its original concentration? Answer with units Total score (out of 100): A+ > 95% A > 90% B+ > 85% B > 80% C+ > 75% C > 70% D > 60%

	Zero Order	First Order	Second Order
Rate Expression	rate = k	rate = k[A]	rate = k[A] ²
Test for order: Makes a straight-line Plot	[A] _t vs t	In[A] _t vs t	¹ /[A] _t vs t
Time-Conc. Expression	$[A]_{t} = -kt + [A]_{o}$	$ln([A]_o / [A]_t) = kt$	$1/[A]_t = kt + 1/[A]_o$
Half-life	$t_{1/2} = [A]_0 / 2k$	$t_{1/2} = 0.693/k$	$t_{1/2} = 1/k[A]_0$

	1																-
1																	2
H																	He
1.008																	4.003
3	4]										5	6	7	8	9	10
l i	Re											R	C	N	0	F	Ne
6 941	9.012											10.81	12 01	14 01	16.00	19 00	20.18
11	12	-										13	14	15	16	17	18
No	Ma											A I	C:	D	c		۸r
INA	Mg											AI	JI		3		AI
22.99	24.30	21	22	22	24	25	26	27	20	20	20	26.98 2 1	28.09	30.97	32.06	35.45 2 E	39.95
19	20	21	<u> </u>	23	24	23	20	21	20	29	30	51	52	33	54	33	30
K	Ca	SC		V	Cr	Mn	⊦e	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.22	92.91	95.94	(97)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Ηf	Та	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	181.0	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116	, í	118
Fr	Ra	l r	Rf	Dh	Sa	Rh	Ηs	Mt	Uun	Uuu	Uub		Uua		Uuh		Uuo
(223)	(226)	(262)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(277)		(289)		(289)		(293)
(220)	(220)	(202)	(201)	(202)	(200)	(201)	(200)	(200)									
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			a ICe	e Pr	No	l Pm	n Sm	n Eu	Go	l Tb) Dv	∕ Hc	Er	Tn	n Yb) Lu	
		138	3.9 140.	1 140.	9 144.	2 (145	5) 150.	4 152.	0 157.	3 158.	9 162.	5 164.	9 167.	3 168.	9 173.	0 175.	0
		89	90	91	92	93	94	95	96	97	98	99	100) 10	1 102	2 10	3
		Δ	c Th	Pa		Nr	ווP ו			nRk		Fe	Fn	n Mr		h	
		(22	7) 232	0 231		0 237	0 (244	(243)				L J) (252	(257) (258	a (250		
		(22	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	201.	200.	U 201.	UL44	/ (243	7 (247	/ (24/	/ (231	, (232	.) (237	, (230	·) (235) (200	·)

Answers

8. 99.5 g

1a. H₂O, 1b. CCl₄, 1c. H₂O or CCl₄, 1d. H₂O or CCl₄, 1e. CCl₄, 1f. CCl₄
2a. 0.0523
2b. 23.1%
2c. 3.06 molal
3. 1.75 M
4. 2, 3, 1, 4
5. 115 mmHg
6a. 90.4 mmHg
6b. Yes
6c. London disp.
7. 74.6 g/mol

9. 1.7 atm

10a. rate = $k[HI]^2$ 10b. 833 s 10c. 7.2 x 10⁻⁵ mol L⁻¹ s⁻¹ 10d. 1.12 x 10⁻⁴ mol L⁻¹ s⁻¹ 11a. rate = $k[NO_2]^2$ 11b. 33.7 L mol⁻¹ s⁻¹ 11c. 0.216 mol L⁻¹ s⁻¹ 12a. 0.208 hr⁻¹ 12b. 0.299 mol/L 12c. 2.37 hr 12d. 3.33 hr 12e. 1.7 hr