Exam 4 Chm 205 (Dr Mattson) 5 April 2017

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Signature:

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for how you worked each problem as well as for the correct answer. If you need more space, you may use the back of the data sheet provided — Write: "See data sheet" in the answer box – then write your name on the data sheet. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks, bags, and purse-like items must be stored in the rear section of the room. Cell phones must be silent and placed in your pocket.

1. Carbonates are an important class of minerals. The Group II carbonates, and their K_{sp} values are:

MgCO ₃	K _{sp} = 6.82 x 10 ⁻⁶	MM = 84.3 g/mol
CaCO ₃	K _{sp} = 3.36 x 10 ⁻⁹	MM = 100.1 g/mol
SrCO ₃	$K_{sp} = 5.60 \times 10^{-10}$	MM = 147.6 g/mol
BaCO ₂	$K_{nn} = 2.58 \times 10^{-9}$	MM = 197.3 g/mol

1a, b. (4 pts) Write a balanced reaction for the dissolution of SrCO₃ in water and write a K_{sp} expression. Save most of the space -- Question 1c uses the same box.

1c. (4 pts) Showing your work in the box above (use a MICE table), determine the molar solubility of strontium carbonate. What is [Sr⁺²]? Include units.

Molar solubility =

1d. (1 pt) Which of these salts has the largest molar solubility? MgCO₃ CaCO₃ SrCO₃ BaCO₃

1e. (4 pts) What mass SrCO₃ dissolves in 400 mL H₂O?

Answer with units:

[Sr⁺²] =

1f. (4 pts) What is the molar solubility of calcium carbonate in a solution containing 0.072 M Ca(NO₃)₂?

Answer with units:

2a (4 pts). What is the molar solubility, x, of $Co(OH)_2$,

given $K_{sp} = 5.9 \times 10^{-15}$

Answer with units:

2b. (2 pts) What is the pH of the above solution?

3. (4 pts) If a saturated solution of Ag_2CO_3 has $[Ag^+] =$

2.56 x 10⁻⁴ M, what is the value of K_{sp} ?

K_{sp} = ____

4. (4 pts). Will a precipitate form if small amounts of Mg(NO₃)₂ and sodium carbonate are added to water so that [Mg²⁺] = 5.0 x 10⁻⁴ M and [CO₃²⁻] = 2.0 x 10⁻⁴ M? You must show work (Q_{sp} calculation) for credit.

Q _{sp} =	Precipitate?	Yes	No

5. (8 pts) Alert! Reactions A-D represent one example of each of the 4 combinations of Δ H and Δ S being + or -.

		ΔН	ΔS
A. $H_2O(g) \rightarrow OH(g) + H(g)$			
B. 3 $O_2(g)$ → 2 $O_3(g)$			
C. 2 Cl(g) \rightarrow Cl ₂ (g)			
D. $C_3H_8(g)$ + 5 $O_2(g)$ →3 $CO_2(g)$ + 4 $H_2O(g)$])		
5a. Which two reactions are exothermic?	A	вС	D
5b. Which two reactions are entropy- favored?	A	вс	D
5c. Which reaction is spontaneous only at high temperatures? (one answer)	A	вС	D
5d. Which reaction is never spontaneous? (one answer)	A	вс	D
(5 pts) Classify each of these as spontane spontaneous at 1 atm.	ous	s or no	n-
$\Delta G < 0$ or $\Delta G > 0$ Cheese molding.			
$\Delta G < 0$ or $\Delta G > 0$ Diffusion of perfume in	a r	oom.	
$\Delta G < 0$ or $\Delta G > 0$ Ice melting in a freezer			
$\Delta G < 0$ or $\Delta G > 0$ Natural gas burning.			

 $\Delta G < 0$ or $\Delta G > 0$ More NaCl dissolving in a saturated solution.

Name:

Chemistry Student Number (1 bonus pt):

- 7. (5 pts) Predict the sign of ΔS for each of these.
 - $\Delta S < 0$ or $\Delta S > 0$ Water vapor condensing. $\Delta S < 0$ or $\Delta S > 0$ Crystals of CaCO₃ forming. $\Delta S < 0$ or $\Delta S > 0$ A drop of ink dissipating in water $\Delta S < 0$ or $\Delta S > 0$ 2 C(s) + O₂(g) \rightarrow 2 CO(g)

 Δ S < 0 or Δ S > 0 2 CO(g) + O₂(g) → 2 CO₂(g)

8. Nitrogen monoxide readily reacts with oxygen to produce nitrogen dioxide, a reddish gas. The reaction is:

 $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g) \Delta H^0 = ? \Delta S^0 = ?$

Thermodynamic data:	∆H _f ^o kJ/mol	∆S ^o J/mol K
NO(g)	+91	211
O ₂ (g)	0	205
NO ₂ (g)	+33	240

8a. (4 pts) Calculate ΔS^0 for this reaction.

	2 NO(g)	+	0 ₂ (g)	\rightarrow	2 NO ₂ (g)	
			Answei	r with u	nits:	
8b. (4 p	ts) Calculate	• ∆H ^o	for this re	eactio	n.	
	2 NO(g)	+	O ₂ (g)	\rightarrow	2 NO ₂ (g)	

Answer with units:

8c. (4 pts) Calculate ΔG^{0} for this reaction.

Answer:

8f. (4 pts) Calculate ΔG at 298 K for this reaction if the initial pressures of NO(g), O₂(g), and NO₂(g) are 2.0 atm, 2.0 atm and 0.20 atm, respectively? Is the reaction spontaneous? Show work for credit!

9a. (4 pts) Balance this redox reaction in aqueous acidic solution. You may need to add H₂O and/or H⁺.

9b. (1 pt) What is the value of n (the LCM)?

$$NO_{3}^{-} + Cu \rightarrow NO_{2} + Cu^{2+}$$

$$n = \underline{e^{-}}$$
9c. (2 pts) Circle what is reduced.
$$NO_{3}^{-} Cu \text{ NO } Cu^{2+}$$
Box what is oxidized.

10. Given: $Ag^+(aq) + Cr(s) \rightarrow Ag(s) + Cr^{3+}(aq)$ unbalanced

10a. (3 pts) Write the reaction in cell notation for this galvanic cell.

- 10d. (2 pts) As reaction proceeds, the cathode **increases** or **decreases** in mass.
- 11a. (4 pts) Determine E^{0} for Pb|Pb²⁺||H⁺|H₂|Pt.

	Answer with units:
111	b. (4 pts) Calculate ΛG° for this reaction.
111	
Γ	

Table of Standard Reduction Potentials

	E ^O (V)
$Cl_2 + 2 e^- \rightarrow 2Cl^-$	1.36
$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$	1.23
$Br_2 + 2 e \rightarrow 2 Br^-$	1.09
$Ag^+ + e^- \rightarrow Ag$	0.80
$I_2 + 2 e^- \rightarrow 2 I^-$	0.54
$O_2 + 2 H_2O + 4 e^- \rightarrow 4 OH^-$	0.40
$Cu^{2+} + 2 e^- \rightarrow Cu$	0.34
$2H^+ + 2 e^- \rightarrow H_2$	0.00
Fe ³⁺ + 3 e ⁻ → Fe	-0.036
$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
Ni ²⁺ + 2 e ⁻ → Ni	-0.26
$Co^{2+} + 2e^{-} \rightarrow Co$	-0.28
PbSO ₄ + 2 e ⁻ → Pb + SO ₄ ²⁻	-0.35
$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40
Fe ²⁺ + 2 e ⁻ → Fe	-0.44
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$Cr^{3+} + 3 e^{-} \rightarrow Cr$	-0.73
$Zn^{2+} + 2e^{-} \rightarrow Zn$	-0.76
2 H ₂ O + 2 e ⁻ → H ₂ + 2 OH ⁻	-0.83
Al ³⁺ + 3 e ⁻ → Al	-1.66
Mg ⁺² + 2 e ⁻ → Mg	-1.66
Na ⁺ + e ⁻ → Na	-2.71
Ca ²⁺ + 2 e ⁻ → Ca	-2.76
Ba ²⁺ + 2 e ⁻ → Ba	-2.90
K ⁺ + e ⁻ → K	-2.92
Li ⁺ + e ⁻ → Li	-3.05

Useful equations for	Thermodynamics:
$\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$	
$\Delta G = \Delta H - T \Delta S$	
$\Delta G = \Delta G^{o} + R T \ln Q$	R = 8.314 J/mol K
∆G ^o = – R T In K	

Useful equations for Electrochemistry:
$E = E^{O} - \frac{0.0592}{n} \log Q = E^{O} - \frac{R}{n} T_{n} F \log Q$
$E^{0} = 0.0592 /_{n} \log K = R T /_{n F} \ln K$
$\Delta G = -nFE \Delta G^{O} = -nFE^{O}$
1 F = 96500 coul = 1 mol e ⁻ = 96500 J/mol V
Charge (coul) = current (amps) x time(s)

Useful equations for Nuclear Chemistry: $ln(No/N_t) = kt$ $t_{1/2} = 0.693/k$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																1	2
н																н	He
1.01																1.01	4 00
3	4											5	6	7	8	9	10
1.	Ba											D	Ċ	Ň	Ň	Ē	No
	DC											D					INC
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
													C				
Na	Mg											AI	51	P	5		Ar
22.99	24.31		-		r	r						26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	97	101.07	102.91	106.4	107.87	112.41	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	209	210	222
87	88	89															
Fr	Ra	Ac															
223	226.03	227															

Answers

1a, b. $SrCO_3 \leftrightarrow Sr^{2+} + CO_3^{2-}$ $K_{sp} = [Sr^{2+}][CO_3^{2-}]$ 1c. Molar solubility = 2.37 x 10⁻⁵ M $[Sr^{2+}] = 2.37 x 10^{-5} M$ 1d. MgCO₃ 1e. 1.40 x 10⁻³ g 1f. 4.7 x 10⁻⁸ M 2a 1.14 x 10⁻⁵ M 2b. 9.36 3. 8.4 x 10⁻¹²

4. $Q_{sp} = 1.0 \times 10^{-7}$, therefore $Q_{sp} < K_{sp}$ and no precipitate forms

```
5.
```

	ΔH	ΔS
A. $H_2O(g) \rightarrow OH(g) + H(g)$	+	+
B. 3 $O_2(g) \rightarrow 2 O_3(g)$	+	-
C. 2 Cl(g) → Cl ₂ (g)	-	-
D. $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4H_2O(g)$	-	+
5a. C, D		
5b. A, D 5c. A 5d. B 6. ΔG < 0, ΔG < 0, ΔG > 0, ΔG < 0, ΔG > 0 7. ΔS < 0, ΔS < 0, ΔS > 0, ΔS > 0, ΔS < 0		
8a. ΔS ^o = -147 J/K 8b. ΔH ^o = -116 kJ 8c. ΔG ^o = -72 kJ 8d. 789 K 8e. K = 4.5 x 10 ⁺¹² M 8f. ΔG = -85 kJ, so Yes, spontaneous		
9a. 4 H ⁺ + 2 NO ₃ ⁻ + Cu → 2 NO ₂ + Cu ²⁺ + 2 H	₂ O; n =	= 2 e⁻
9c. Circle NO ₃ ⁻ ; Box Cu		
10a. Cr Cr ³⁺ Ag ⁺ Ag 10b. E ^o = 1.53 V 10c. Cr Cr ³⁺		

10d. increases 11a. E^o = +0.13 v

11b. ∆G^o = -25 kJ