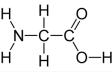
Exam 1 Chm 205 (Dr Mattson) 5 February 2016

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.


Name:

Chemistry Student Number:

Signature:

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for how you worked each problem as well as for the correct answer. If you need more space, you may use the back of the data sheet provided — Write: "See data sheet" in the answer box - then write your name on the data sheet. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks, bags, and purse-like items must be stored in the rear section of the room. Cell phones must be silent and placed in your backpack/bag/purse - not in your pocket.

1. Glycine is the simplest of the 20 or so amino acids found in proteins. In this stick drawing, the electron pairs are not shown.

1a. (2 pts) Add the electron pairs wherever needed to the structure above.

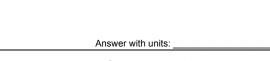
1b. (1 pt) Do you predict that glycine is soluble in water?

Circle Yes or No

- 1c. (1 pt) What is the name of the functional group at the right in the figure: -COOH? Print. Spelling counts.
- 2. (3 pts) Circle which of these solutes would you predict to be soluble in water? Hint: More than one.

3. (3 pts) Which of these solutes would you predict to be soluble in benzene, C₆H₆, a non-polar solvent? (>1)

 $CS_2 K_2SO_4 CCI_4 NH_4NO_3$


4. Suppose a solution was prepared by dissolving 40.0 g sodium acetate, $NaC_2H_3O_2$, in 100.0 g water. You may use this table to organize your calculations if you wish.

	ММ	m	n
$\rm NaC_2H_3O_2$	82.0 g mol ⁻¹		
H ₂ O	18.0 g mol ⁻¹		

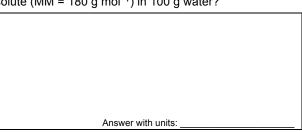
4a. (4 pts) What is the mole fraction of NaC₂H₃O₂?

Answer

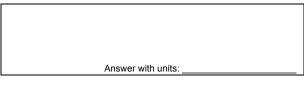
4b. (4 pts) What is the mass percent of NaC₂H₃O₂?

5. An aqueous solution of sodium bromide is 44.7 mass% NaBr with a density of 1.49 g/cm³.

	MM	m	n	V				
NaBr	102.9 g mol ⁻¹							
H ₂ O	18.0 g mol ⁻¹							
Solution								


5a. (4 pts) What is the mole fraction of NaBr?

Answer: 5b. (4 pts) What is the molarity of NaBr?

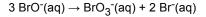

Answer with units:

6. (5 pts) At 25 °C, pure water has a vapor pressure of 24.0 mmHg. What is the vapor pressure of a solution containing 85.0 g glucose, C₆H₁₂O₆, a non-volatile

solute (MM = 180 g mol^{-1}) in 100 g water?

7. (5 pts) What is the freezing point of the solution described in Question 6? Given: K_f = 1.86 deg/molal

8. (5 pts) What is the molar mass of an unknown, nonelectrolyte given that 15.44 g of the unknown dissolved in 50.0 g water lowers the freezing point of water by 3.1 degrees? See Question 7 for the K_f value.


Answer with units:

9. (4 pts) Suppose an aqueous solution contains 2.0 ppm Pb²⁺ ion. What is [Pb²⁺]? Density of water is 1.0 g/mL.

Answer with units:

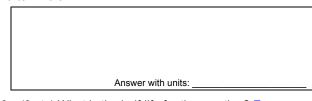
10. (10 pts) True or False

- T F The solubility of gases decreases as the temperature of the solution increases.
- T F Entropy increases as a gas dissolves in a liquid.
- T F Osmotic pressure is independent of temperature.
- T F Ionic substances that dissolve in water dissociate into ions.
- T F Propane has a higher boiling point than ethane.
- T F A solution of two volatile liquids will have a vapor pressure between that of the components.
- T F The solution described in Question 4 has a boiling point higher than that of pure water.
- T F Propane has a higher boiling point than propanol.
- T F Propanoic acid is soluble in water due to H-bonding.
- T F Propene has two carbons with sp² hybridization and one with sp³ hybridization.
- 11a. (4 pts) Consider the reaction and data from a series of experiments. Determine the order and rate law.

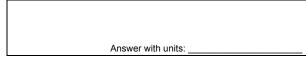
	Initial [BrO ⁻] mol/L	-∆[BrO⁻]/∆t mol/Ls
Expt 1	0.107	5.6 x 10 ⁻⁴
Expt 2	0.345	5.8 x 10 ⁻³
Expt 3	0.221	?

Answer (rate law):

11b. (4 pts) Determine the rate constant and use it to calculate that rate when [BrO⁻] = 0.221 M (Expt 3)

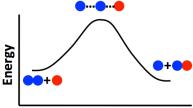

Answer with units:

12. (4 pts) Suppose the reaction, A → B gives a straight line when [A]_t is plotted against time. The slope of the line is -7.2 x 10⁻⁴ mol L⁻¹ min⁻¹. Given that [A]₀ = 0.0448 mol L⁻¹, what is [A] after 20.0 min?


Answer with units:

13. Cyclopropane, C₃H₆(g), decomposes following first order kinetics with a rate constant, k = 6.7 x 10⁻⁴ s⁻¹.
13a. (5 pts) If [C₃H₆]_{t=0} = 1.34 M, how long does it take for [C₃H₆] = 0.25 M? Express your answer in minutes.

13b. (5 pts) If the initial $[C_3H_6]_{t=0} = 1.34$ M, what is $[C_3H_6]$ after 475 s?


13c. (3 pts) What is the half-life for the reaction? Express your answer in minutes.

13d. (4 pts) True or false.

- T F The rate constant will increase as temperature is increased.
- T F The rate will increase if the temperature is increased.
- T F The rate will increase if $[C_3H_6]$ is increased.
- T F The rate constant will increase if $[C_3H_6]$ is increased.

14. Use this diagram to answer the questions that follow. Use **R** to represent each red atom and **B** for <u>each</u> blue atom, just like in the book problems.

Reaction progress \rightarrow

- 14a. (2 pts) What is the overall balanced reaction that takes place?
- 14b. (2 pts) How many steps are there in the reaction mechanism?
- 14c. (1 pt) The mechanism is □ unimolecular or □ bimolecular or □ termolecular
- 14d. (3 pts) What is the rate law for this reaction mechanism represented here? Start with rate =

14e. (5 pts) Which of the following would increase the rate of this reaction? Check all that apply.

 \Box Increasing [R] \Box Increasing [B₂] \Box Increasing [B]

- □ Increasing [BR] □ Increasing temperature
- 14f. (1 pt) Clearly label E_{act} on this diagram.
- 14g. (1 pt) Circle the transition state.
- 14h. (1 pt) The reaction is Exothermic or Endothermic

Total score (out of 100):

A+ ≥ 95% A ≥ 90% B+ ≥ 85% B ≥ 80% C+ ≥ 75% C ≥ 70% D ≥ 60%

	Zero Order	First Order	Second Order		
Rate Expression	rate = k	rate = k[A]	rate = k[A] ²		
Units on k, the rate constant	mol/ L s	1/s or s ⁻¹	L/mol s		
Test for order: Makes a straight-line Plot	[A] _t vs t	In[A] _t vs t	¹ /[A] _t vs t		
Time-Conc. Expression	$[A]_t = -kt + [A]_o$	$ln([A]_o / [A]_t) = kt$	$1/[A]_t = kt + 1/[A]_o$		
Half-life	$t_{1/2} = [A]_o /_{2k}$	$t_{1/2} = 0.693/k$	$t_{1/2} = {}^{1}/k[A]_{0}$		

	-																
1																	2
Н																	He
1.008																	4.003
	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Ρ	S	CI	Ar
22.99	24.30											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85		58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	. 88.91	91.22	92.91	95.94	(97)	101.1	102.9	106.4	107.9		114.8	118.7	121.8	127.6	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	Lu	Ηf	Та	W	Re	Os	lr	Ρt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3	175.0	178.5	181.0	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
	88	103	104	105	106	107	108	109	110	111	112		114		116	(=)	118
Fr		Lr	Rf	Db		Bh	Hs	Mt		Uuu			Uuq		Uuh		Uuo
(223)	(226)	(262)	(261)	(262)	(263)	(264)	(265)	(268)		(272)	(277)		(289)		(289)		(293)
(220)	(220)								1	I 	1	 		I	1 T	1	
		57		59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	a Ce	e Pr	Nc	l Prr	ו Sm	ו ∣Eu	Go	l Tb) ∣Dy	⁄∦Ho) Er	Tn	n Yb) Lu	1
			3.9 140.								9 162.	5 164.					
		89	90	91	92	93	94	95	96	97	98	99	10	0 10	1 102	2 103	3
		Α	c∣Th	n Pa	U	Np) Pu	An	n Cr	n Bk	Cf	Es	Fn	n Mo	d No) Lr	
			7) 232.			0 237.											

Answers

1a. Add a pair of electrons to the N atom and two pairs of electrons to each of the O atoms.

```
1b. Yes
```

```
1c. carboxylic acid
```

```
2. NaBr CH<sub>3</sub>OH NH<sub>2</sub>NH<sub>2</sub>
```

3. CS₂ CCl₄

4.

4.									
	MM	m	n						
	NaC ₂ H ₃ O ₂ 82.0 g mol⁻ ¹	40.0 g	0.488 mol						
	H ₂ O 18.0 g mol ⁻¹	100.0 g	5.56 mol						
	. 0.0807								
4b. 5.	. 28.6%								
0.	MM	m	n	V					
	NaBr 102.9 g mol ⁻¹	44.7 g	0.434 mol						
	H ₂ O 18.0 g mol ⁻¹	55.3 g	3.07 mol						
	Solution	100 g		67.1 mL					
5a.	. 0.124								
	. 6.47 M								
6. 2	22.1 mmHg								
7	-8.8 ^o C								
	185 g/mol								
	9.7 x 10 ⁻⁶ M Pb ²⁺								
10.		т т	т т	FTT					
	a. 2 nd order; rate = k[BrO ⁻] ²								
	b. k = 0.0489 L/mol s and the i	ate is 2.39 x 10 ⁻³	³ mol/L s						
	. 0.0304 mol/L								
	a. 41.8 min								
	b. 0.975 M c. 17.2 min								
130		F							
	a. B ₂ + R → B + BR								
	b. one								
	c. bimolecular								
	d. rate = k [B ₂][R]								
	14e. Increasing [R]; Increasing [B ₂]; Increasing temperature								

14f. Draw a horizontal line from bottom of left hill and another from top of hill top. The vertical distance is the E_{act}.

14g. The transition state is the tip top of the hill.

14h. Exothermic