Exam 4 Chm 203 (Dr Mattson) 13 November 2017

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Signature:

Name:

Chemistry Student Number:

One point bonus for correctly completing all three items: printed name, signature, and chemistry student number.

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for how you worked each problem as well as for the correct answer. If you need more space, you may use the back of the periodic table provided - Write: "See periodic tablet" in the answer box - then write your name on the periodic table and turn it in with your exam. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks, bags, and purse-like items must be stored in the rear section of the room. Cell phones must be silent and placed in your backpack/bag/purse - not in your pocket.

- 1. (5 pts) In each set, circle the most electronegative element.
 - a. O CI Kr
 - F b. C Ο
 - c.S CI Ar
 - Р d. N As
 - e. Cl Sn Sb
- 2. (5 pts) In each set, circle the most polar bond.
 - a. O Br 0 – Cl 0 – F
 - b. C N C - OC – F
 - c. H B H - CH - O
 - d. F S CI - OAs – F
 - e. | | | F F - F
- 3. (5 pts) Molecular hydrogen, H₂, has a bond length of 74 pm and a bond strength of 436 kJ/mol. Answer these T/F questions about H₂.
 - T F The H H bond is a π -bond.
 - T F The bond strength would decrease if the hydrogen atoms were stretched apart.
 - T F The bond strength would increase if the hydrogen atoms were forced closer together.
 - T F In H₂ the bond is formed by the overlap of two 1s orbitals from the hydrogen atoms.
 - T F Breaking the H H bond would have $\Delta E = -436$ kJ/mol (H₂ \rightarrow 2 H Δ E = -436 kJ/mol)
- 4. (8 pts) Sketch the best Lewis dot structures for these ions, none of which actually exist. Answer the questions that follow.

a. FO ₃ +	b. NO ₂ ⁺
c. OCl ₃ +	d. FO ₃ -

4b. (4 pts) Circle all ions with resonance (ignoring those with unacceptable formal charges):

a. FO₃+ b. NO_2^+ c. OCl₃+ d. FO₃⁻

4c. (2 pts) Circle two isostructural ions.

a.
$$FO_3^+$$
 b. NO_2^+ c. OCI_3^+ d. FO_3^-

4d. (4 pts) Circle all ions with E groups in their ABE formulas.

a. FO_3^+ b. NO_2^+ c. OCI_3^+ d. FO₃⁻

4e. (4 pts) Circle all ions with a trigonal planar shape.

a.
$$FO_3^+$$
 b. NO_2^+ c. OCI_3^+ d. FO_3^-

4f. (4 pts) What is the hybridization of the central atom in each structure?

a. FO ₃ +	b. NO ₂ ⁺
c. OCl ₃ ⁺	d. FO ₃ -

5a. (4 pts) The azide ion, N₃⁻, is used in the form of NaN₃ in automobile airbags. Assign formal charges below each atom in these two possible structures.

- 5b. (1 pt) Which is the most important structure? Circle your choice.
- 5c. (1 pt) What is the hybridization of the σ -bonds

Left or Right

 π -bonds

5d. (2 pts) How many σ -bonds and π bonds are in the azide ion?

central nitrogen atom?

6. (5 pts) Add double bonds as necessary to this organic structure. Add electron pairs as necessary throughout. Dots and lines must be bold enough for me to see.

7a. (4 pts) Sketch the structures of these molecules.		
a. SF ₆	b. PF ₅	
7b. (2 pts) What is the geometry	ry name for each?	
a. SF ₆	b. PF ₅	
7c. (2 pts) Are these molecules	s polar?	
a. SF ₆ Yes or No	b. PF ₅ Yes or No	
7d. (4 pts) What are the approximate bond angles within the molecule? Circle all that apply.		
a. SF ₆ 90°109°120	° 180°	
b. PF ₅ 90 ^o 109 ^o 120	0° 180°	
q = c x m x Δ T Specific heat for water, c _{water} = 4.184 J g ⁻¹ deg ⁻¹		
8. (5 pts) Suppose 97 g water, initially at 24.0 ^o C, absorbs 1750 J heat. What is the final temperature of the water?		
You must show work for credit.		
A	nswer with units:	
 9. (4 pts) Given the following information, calculate ∆H for the third equation. 		
$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$	g) ∆H ^o = -116 kJ	
$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$	g) ∆H ^o = -198 kJ	
$NO(g) + SO_3(g) \rightarrow NO_2(g) +$	$\Delta H^{o} = ?$	
You must show work for credit.		

Answer with units: _

 (2 pts) Write the equation for the standard heat of formation of potassium phosphate. Include states of matter, (s), (l), or (g).

No partial credit.

11. (5 pts) Referring to the second equation in Question 9, calculate q if 215 g SO₂(g) is reacted with excess O₂.

Answer with units: 14. (10 pts) Naming. Complete the formula or name for each pair of the following. Nom. Certified: Skip this. A. dinitrogen trioxide B. vanadium(III) perchlorate C. hydrofluoric acid D. iodic acid Ε. lead(IV) sulfide F. CoSO₃ G. HClO₂(aq) Η. $(NH_4)_2SO_3$ SF₆ ١. J. XeF_4

Total score (out of 100):

 $A + \ge 95\%$ $A \ge 90\%$ $B + \ge 85\%$ $B \ge 80\%$ $C + \ge 75\%$ $C \ge 70\%$ $D \ge 60\%$

Exam 4 Chm 203 (Dr Mattson) 13 November 2017

Academic Integrity Pledge: In keeping with Creighton University's ideals and with the Academic Integrity Code, I pledge that this work is my own and that I have neither given nor received inappropriate assistance in preparing it.

Name:

Signature:

Instructions: Show all work whenever a calculation box is provided! Write legibly. Include units whenever appropriate. You will receive credit for how you worked each problem as well as for the correct answer. If you need more space, you may use the back of the periodic table provided — Write: "See periodic tablet" in the answer box – then write your name on the periodic table and turn it in with your exam. On your desk you are allowed only pencils (but no pencil pouch), an eraser, and a non-programmable calculator without a slipcover. Backpacks, bags, and purse-like items must be stored in the rear section of the room. Cell phones must be silent and placed in your backpack/bag/purse – not in your pocket.

- 1. (5 pts) In each set, circle the most electronegative element.
 - a. (0) (C) Kr b. C O (F) c. S (C) Ar d. (N) P As e. (C) Sn Sb
- 2. (5 pts) In each set, circle the most polar bond.

- 3. (5 pts) Molecular hydrogen, H_2 , has a bond length of 74 pm and a bond strength of 436 kJ/mol. Answer these T/F questions about H_2 .
 - T (F) The H H bond is a π -bond.
 - F The bond strength would decrease if the hydrogen atoms were stretched apart.
 - T **(F)** The bond strength would increase if the hydrogen atoms were forced closer together.
- F In H₂ the bond is formed by the overlap of two 1s orbitals from the hydrogen atoms.
- T E Breaking the H H bond would have $\Delta E = -436$ kJ/mol (H₂ \rightarrow 2 H $\Delta E = -436$ kJ/mol)
- (8 pts) Sketch the best Lewis dot structures for these ions, none of which actually exist. Answer the questions that follow.

4b. (4 pts) Circle all ions with resonance (ignoring those with unacceptable formal charges):

One point bonus for correctly completing all three items: printed

 $c. OCl_3^+$ a FO₂+ b. NO₂+ d. FO3

4c. (2 pts) Circle two isostructural ions.

b. NO2+

Chemistry Student Number:

name, signature, and chemistry student number.

- a. FO_3^+ b. NO_2^+ OCl₃⁺ OFO₃⁻
- 4d. (4 pts) Circle all ions with E groups in their ABE formulas.

a. FO3⁺

4e. (4 pts) Circle all ions with a trigonal planar shape.

COCI3+

d.FO3

- (a) FO_3^+ b. NO_2^+ c. OCI_3^+ d. FO_3^-
- 4f. (4 pts) What is the hybridization of the central atom in each structure?

a. FO ₃ +	S p2	b. NO2+	sp
c. OCl ₃ +	sp3	d. FO ₃ -	spz

5a. (4 pts) The azide ion, N₃⁻, is used in the form of NaN₃ in automobile airbags. Assign formal charges below each atom in these two possible structures.

5b. (1 pt) Which is the most important structure? Circle your choice.

5c. (1 pt) What is the hybridization of the

5d. (2 pts) How many σ -bonds and π bonds are in the azide ion?

central nitrogen atom?

 (5 pts) Add double bonds as necessary to this organic structure. Add electron pairs as necessary throughout. Dots and lines must be bold enough for me to see.

11. (5 pts) Referring to the second equation in Question 9, calculate q if 215 g SO₂(g) is reacted with excess O₂.

12. (5 pts) When 3.090 g CaO(s) is added to 100.0 g water at 24 °C in a calorimeter, the temperature of the water increases to 34.6 °C. Estimate ΔH for the reaction below.

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) \quad \Delta H^0 =$ You must show work for credit. Mind the sign of your answer. $q_{cal} = 4,184 + 103,09 + 10,6 dep$ $= 4.57 \text{ FJ} \quad q_{cal} = -q_{rm}$ $\Delta H = -\frac{4}{57} \text{ FJ} \quad 569$ = -85 FJ/mol CaO

Answer with units

 (3 pts) Estimate ∆H for the following reaction given these bond dissociation energies (kJ/mol): CI-CI: 243; S-H: 340; S-CI: 250; and H-CI: 432

 $SH_2(g) + 2 Cl_2(g) \rightarrow SCl_2(g) + 2 HCl(g)$

14. (10 pts) Naming. Complete the formula or name for each pair of the following. Nom. Certified: Skip this.

Α.	dinitrogen trioxide	
В.	vanadium(III) perchlorate	
C.	hydrofluoric acid	
D.	iodic acid	
Ε.	lead(IV) sulfide	× 4
Fø	8 d 8	CoSO3
G.		HCIO ₂ (aq)
Ηe		(NH ₄) ₂ SO ₃
Ŀ		SF ₆
J.	a gran a da	XeF ₄
Tot	tal score (out of 100);	14
101		
A+ >	95% A > 90% B+ > 85% B > 80% C+ >	75% C ≥ 70% D ≥ 60%